【題目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期為π.
(Ⅰ)當x∈[0, ]時,求f(x)的最大值;
(Ⅱ)請用“五點作圖法”畫出f(x)在[0,π]上的圖象.

【答案】解:(Ⅰ)由f(x)=4sinωxsin(ωx+ )﹣1=2sin2ωx﹣1+2 sinωxcosωx=2sin(2ωx﹣

由f(x)的最小正周期為π,得ω=1,所以f(x)=2sin(2x﹣ ).

因為x∈[0, ],所以2x﹣ ∈[﹣ , ],

故當2x﹣ = ,即x= 時,f(x)取得最大值2.

(Ⅱ)由f(x)=2sin(2ωx﹣ )知:

2x﹣

0

π

x

0

π

f(x)

﹣1

0

2

0

﹣2

﹣1


【解析】(Ⅰ)根據(jù)兩角和差正弦公式可得f(x)=2sin(2ωx﹣ ),由周期公式可得ω=1即得f(x)的解析式。再根據(jù)已知可得2x﹣ ∈[﹣ , ],由整體思想可得,當x= 時,f(x)取得最大值2。
(Ⅱ) 由 f(x)=2sin(2ωx﹣ )取幾個特殊點可得函數(shù)圖像。
【考點精析】根據(jù)題目的已知條件,利用五點法作函數(shù)y=Asin(ωx+φ)的圖象的相關知識可以得到問題的答案,需要掌握描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,隨機抽取了6個試銷售數(shù)據(jù),得到第i個銷售單價xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入﹣成本)
附:回歸直線方程 中, = = ,其中 是樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在Rt△AOB中,AO=1,BO=2,如圖,動點P是在以O點為圓心,OB為半徑的扇形內(nèi)運動(含邊界)且∠BOC=90°;設 ,則x+y的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
(1)求函數(shù) 的單調(diào)區(qū)間;
(2)若函數(shù) 在區(qū)間 上的最小值為0,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ln|x﹣1|+2cosπx(﹣2≤x≤4)的所有零點之和等于( )
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 .
(1)試求曲線C在點 處的切線方程;
(2)試求與直線 平行的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知| |= ,| |=2,向量 的夾角為150°.
(1)求:| ﹣2 |;
(2)若( +3λ )⊥( ),求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4
(1)求{an}的通項公式;
(2)設cn=an+bn , 求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y=sin(2x+ )的圖象,只需將y=cos2x的圖象上每一點(
A.向右平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向左平移 個單位長度

查看答案和解析>>

同步練習冊答案