如圖是某正五棱臺(tái)燈罩的俯視圖,在A,B,C,D,E五個(gè)側(cè)面上裝裱3種不同的透明中國山水畫,相鄰區(qū)域的中國山水畫不同,則不同的裝裱方案數(shù)是
 
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:有題意分兩類,當(dāng)AC側(cè)面的中國山水畫相同時(shí),和當(dāng)AC側(cè)面的中國山水畫不同時(shí),根據(jù)分類計(jì)數(shù)原理可得.
解答: 解:當(dāng)AC側(cè)面的中國山水畫相同時(shí),有3種可能,此時(shí)B側(cè)面有2種不同的裝裱方法,
DE兩個(gè)側(cè)面也有2種不同的裝裱方法,故有3×2×2=12種方法;
當(dāng)AC側(cè)面的中國山水畫不同時(shí),A,B,C三個(gè)側(cè)面有A33=6種不同的方法,
此時(shí)D,E側(cè)面中有一個(gè)與B側(cè)面的中國山水畫相同,因此D,E有2種不同的方法,
故有6×2=12種方法.
綜上,共有12+12=24種不同的裝裱方法,
故答案為:24.
點(diǎn)評(píng):本題考查了分類計(jì)數(shù)原理,關(guān)鍵是如何分類,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將下面用分析法證明
a2+b2
2
≥ab的步驟補(bǔ)充完整;要證
a2+b2
2
≥ab,只需證a2+b2≥2ab,也就是證
 
,即證
 
,由于
 
顯然成立,因此原不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)Cn=4n+(-1)n-1•λ2an(λ為非零整數(shù),n∈N*),是否存在確定λ的值,使得對(duì)任意n∈N*,有Cn+1>Cn恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一架鋼琴挑出的十個(gè)音鍵中,分別選擇3個(gè),4個(gè),5個(gè),…,10個(gè)鍵同時(shí)按下,可發(fā)出和聲,若有一個(gè)音鍵不同,則發(fā)出不同的和聲,則這樣的不同的和聲數(shù)為
 
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過y=x2上一點(diǎn)(a,a2)作切線,問a為何值時(shí)所作切線與拋物線y=-x2+4x-1所圍區(qū)域的面積最小( 。
A、2B、1C、1.5D、2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知3cos(B-C)=1+6cosBcosC.
(1)求cosA;
(2)若a=3,△ABC的面積為2
2
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后與函數(shù)y=cos(2x-
π
2
)的圖象重合,則y=f(x)的解析式為(  )
A、y=cos(2x-
π
2
B、y=cos(2x+
π
6
C、y=sin(2x+
π
3
D、y=sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|-2≤x≤2},N={-1,0,4},則M∩N=( 。
A、{-1,0,4}
B、{-1,0}
C、{0,4}
D、{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l:ax+by+c=0被圓C:x2+y2=16截得的弦的中點(diǎn)為M,若a+3b-c=0.則OM2的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案