19.$sin\frac{π}{12}cos\frac{π}{12}$等于(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

分析 利用二倍角的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計算得解.

解答 解:$sin\frac{π}{12}cos\frac{π}{12}$=$\frac{1}{2}$sin$\frac{π}{6}$=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$.
故選:B.

點評 本題主要考查了二倍角的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學生,在某道題目上的答對率也應較高,如果是某次數(shù)學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數(shù)段,縱坐標為該分數(shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是( 。
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數(shù)學成績的好與壞
C.分數(shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知△ABC的面積為$\sqrt{3}$,且∠C=30°,BC=2$\sqrt{3}$,則AB等于( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={-1,1},B={1,-1,3},那么A∩B=等于( 。
A.{-1}B.{1}C.{-1,1}D.{1,-1,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,a=2,c=1,∠B=60°,那么b等于( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.1D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\frac{1}{x-1}$.關于f(x)的性質(zhì),給出下面四個判斷:
①f(x)的定義域是R;
②f(x)的值域是R;
③f(x)是減函數(shù);
④f(x)的圖象是中心對稱圖形.
其中正確的判斷是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=sin(ωx+\frac{π}{4})$,其中ω>0,x∈R.
(1)f(0)=$\frac{\sqrt{2}}{2}$;
(2)如果函數(shù)f(x)的最小正周期為π,當$x∈[0,\frac{π}{2}]$時,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設實數(shù)a,b滿足約束條件$\left\{\begin{array}{l}a+b-2≥0\\ b-a-1≤0\\ a≤1\end{array}\right.$,則$\frac{b+2}{a+2}$的取值范圍為$[1,\frac{7}{5}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.直線y=2016與正切曲線y=tan3x相交的相鄰兩點間的距離是( 。
A.πB.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習冊答案