已知正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)AB=2BB1,則異面直線AB1與BC所成的角的余弦值是( )

A.
B.
C.
D.
【答案】分析:由正三棱柱的性質(zhì),可得異面直線AB1與BC所成的角為∠AB1C1或其補(bǔ)角,設(shè)B1C1=2,則 BB1 =1,△AB1C1 中,由余弦定理可得cos∠AB1C1=,從而得到異面直線AB1與BC所成的角的余弦值.
解答:解:正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)AB=2BB1,則異面直線AB1與BC所成的角為∠AB1C1或其補(bǔ)角,
△AB1C1 中,設(shè)B1C1=2,則 BB1 =1,AC1====AB1
△AB1C1 中,由余弦定理可得 AC12=AB12+B1C12-2AB1•B1C1cos∠AB1C1,
即 5=5+4-2××2cos∠AB1C1,∴cos∠AB1C1=
故異面直線AB1與BC所成的角的余弦值是
點(diǎn)評(píng):本題主要考查正三棱柱的性質(zhì),異面直線所成的角的定義和求法,余弦定理的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為1,高為h(h>2),動(dòng)點(diǎn)M在側(cè)棱BB1上移動(dòng).設(shè)AM與側(cè)面BB1C1C所成的角為θ.
(1)當(dāng)θ∈[
π
6
π
4
]
時(shí),求點(diǎn)M到平面ABC的距離的取值范圍;
(2)當(dāng)θ=
π
6
時(shí),求向量
AM
BC
夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1的每條棱長(zhǎng)均為a,M為棱A1C1上的動(dòng)點(diǎn).
(1)當(dāng)M在何處時(shí),BC1∥平面MB1A,并證明之;
(2)在(1)下,求平面MB1A與平面ABC所成的二面角的大小;
(3)求B-AB1M體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1,底面邊長(zhǎng)為8,對(duì)角線B1C=10,
(1)若D為AC的中點(diǎn),求證:AB1∥平面C1BD;
(2)若CD=2AD,BP=λPB1,當(dāng)λ為何值時(shí),AP∥平面C1BD;
(3)在(1)的條件下,求直線AB1到平面C1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1中,D是BC的中點(diǎn),AA1=AB=1.
(1)求證:平面AB1D⊥平面B1BCC1;
(2)求證:A1C∥平面AB1D;
(3)求二面角B-AB1-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)如圖,已知正三棱柱ABC-A1B1C1各棱長(zhǎng)都為a,P為棱A1B上的動(dòng)點(diǎn).
(Ⅰ)試確定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)C1到面PAC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案