分析 用a表示出A,B,C,D四點的橫坐標,計算$\frac{n}{m}$的值,再利用基本不等式求解.
解答 解:(Ⅰ)設(shè)A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),
則x${\;}_{A}={4}^{-a}$,${x}_{B}={4}^{a}$,${x}_{C}=4-\frac{18}{2a+1}$,${x}_{D}=4•\frac{18}{2a+1}$,
則$\frac{n}{m}=\frac{{4}^{a}-4•\frac{18}{2a+1}}{{4}^{-a}-{4}^{-\frac{18}{2a+1}}}$=${4}^{a+\frac{18}{2a+1}}$,
令f(a)=log${\;}_{4}\frac{n}{m}$=a+$\frac{18}{2a+1}$=a+$\frac{1}{2}$+$\frac{9}{a+\frac{1}{2}}$-$\frac{1}{2}$,
∵$a+\frac{1}{2}>\frac{1}{2}$,
∴$f(a)≥2\sqrt{9}-\frac{1}{2}=\frac{11}{2}$,當且僅當a+$\frac{1}{2}$=$\frac{9}{a+\frac{1}{2}}$,即a=$\frac{5}{2}$時取等號,
所以當a=$\frac{5}{2}$時,f(a)有最小值,$\frac{n}{m}$也有最小值.
故答案為:$\frac{5}{2}$.
點評 本題考查了對數(shù)函數(shù)的圖象,對數(shù)運算,基本不等式,屬于基礎(chǔ)題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>0,x2+x>0 | B. | ?x>0,x2+x≤0 | C. | ?x>0,x2+x≤0 | D. | ?x>0,x2+x<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com