已知點(diǎn)與圓,是圓上任意一點(diǎn),則的最小值

   ▲  

 

【答案】

5

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,左焦點(diǎn)為F,過(guò)原點(diǎn)的直線l交橢圓于M,N兩點(diǎn),△FMN面積的最大值為1.
(1)求橢圓E的方程;
(2)設(shè)P,A,B是橢圓E上異于頂點(diǎn)的三點(diǎn),Q(m,n)是單位圓x2+y2=1上任一點(diǎn),使
OP
=m
OA
+n
OB

①求證:直線OA與OB的斜率之積為定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省營(yíng)口市高一上學(xué)期期末檢測(cè)數(shù)學(xué)試卷 題型:解答題

.(本小題滿分12分)

已知點(diǎn),一動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切,

(1)求動(dòng)圓圓心的軌跡的方程;

(2)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;

(3)在的條件下,設(shè)△的面積為(是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問(wèn)是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省高二期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿分15分)已知點(diǎn),一動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切.

(Ⅰ)求動(dòng)圓圓心的軌跡的方程;

(Ⅱ)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;

(Ⅲ)在的條件下,設(shè)△的面積為是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問(wèn)是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn),一動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切.

(Ⅰ)求動(dòng)圓圓心的軌跡的方程;

(Ⅱ)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值

(Ⅲ)在的條件下,設(shè)△的面積為是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問(wèn)是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

已知點(diǎn),一動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切,

(1)求動(dòng)圓圓心的軌跡的方程;

(2)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值

(3)在的條件下,設(shè)△的面積為(是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問(wèn)是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案