精英家教網 > 高中數學 > 題目詳情
11.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

分析 由已知中的三視圖可得:該幾何體是一個以俯視圖中右下角的三角形為底面的三棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以俯視圖中左上角的三角形為底面的三棱錐,
其直觀圖如下圖所示:

其底面面積S=$\frac{1}{2}$×2×2=2,
高h=2,
故棱錐的體積V=$\frac{1}{3}Sh$=$\frac{4}{3}$,
故選:B.

點評 本題考查的知識點是棱柱的體積和表面積,棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的解集記為D,有下面四個命題:
p1:?(x,y)∈D,2x+3y≥-1;   
p2:?(x,y)∈D,2x-5y≥-3;
p3:?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$;      
p4:?(x,y)∈D,x2+y2+2y≤1.
其中的真命題是( 。
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.拋物線y2=2x的焦點到準線的距離為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差數列,且b=3,求ABB1A1面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.一個四棱錐的三視圖如圖所示(單位:cm),這個四棱錐的體積為72cm3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知集合An={(x1,x2,…,xn)|xi∈{-1,1}(i=1,2,…,n)}.x,y∈An,x=(x1,x2,…,xn),y=(y1,y2,…,yn),其中xi,yi∈{-1,1}(i=1,2,…,n).定義x⊙y=x1y1+x2y2+…+xnyn.若x⊙y=0,則稱x與y正交.
(Ⅰ)若x=(1,1,1,1),寫出A4中與x正交的所有元素;
(Ⅱ)令B={x⊙y|x,y∈An}.若m∈B,證明:m+n為偶數;
(Ⅲ)若A⊆An,且A中任意兩個元素均正交,分別求出n=8,14時,A中最多可以有多少個元素.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,ABCD-A1B1C1D1是正方體,O、M、N分別是B1D1、AB1、AD1的中點,直線A1C交平面AB1D1于點P.
(Ⅰ)證明:MN∥平面CB1D1;
(Ⅱ)證明:①A、P、O、C四點共面;②A、P、O三點共線.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個周期內的圖象時,列表并填入了部分數據,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)請將上表數據補充完整,并直接寫出函數f(x)的解析式;
(2)將函數y=f(x)的圖象向左平移$\frac{π}{4}$個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,求g(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.高一年級某班共有學生64人,其中女生28人,現用分層抽樣的方法,選取16人參加一項活動,則應選取男生人數是( 。
A.9B.8C.7D.6

查看答案和解析>>

同步練習冊答案