(2008•深圳二模)已知(1-x)n的展開(kāi)式中所有項(xiàng)的系數(shù)的絕對(duì)值之和為32,則(1-x)n的展開(kāi)式中系數(shù)最小的項(xiàng)=
-10x3
-10x3
分析:由題意(1-x)n的展開(kāi)式中所有項(xiàng)的系數(shù)的絕對(duì)值之和為32,故可令x=-1,得到2n=32,解出n的值,再判斷出系數(shù)最小的項(xiàng)解出即可得到答案
解答:解:由題意,令x=-1,得2n=32,解得n=5
∴(1-x)5的展開(kāi)式中系數(shù)最小的項(xiàng)是T4=C53(-x)3=-10x3
故答案為-10x3
點(diǎn)評(píng):本題考查二項(xiàng)定理,解題的關(guān)鍵是理解題意中“展開(kāi)式中所有項(xiàng)的系數(shù)的絕對(duì)值之和為32”,從而解出n的值,判斷系數(shù)最小的項(xiàng)是本題的難點(diǎn),由二項(xiàng)式可得出系數(shù)最小的項(xiàng)系數(shù)一定為負(fù),再結(jié)合組合數(shù)的性質(zhì)即可判斷出系數(shù)最小的項(xiàng)為T(mén)4,本題解答中用到了方程的思想,考查了判斷推理的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)一個(gè)質(zhì)點(diǎn)從A出發(fā)依次沿圖中線段到達(dá)B、C、D、E、F、G、H、I、J各點(diǎn),最后又回到A(如圖所示),其中:AB⊥BC,AB∥CD∥EF∥HG∥IJ,BC∥DE∥FG∥HI∥JA.欲知此質(zhì)點(diǎn)所走路程,至少需要測(cè)量n條線段的長(zhǎng)度,則n=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)在△ABC中,A=
π
4
,cosB=
10
10

(1)求cosC;
(2)設(shè)BC=
5
,求
CA
CB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)當(dāng)點(diǎn)M(x,y)在如圖所示的三角形ABC內(nèi)(含邊界)運(yùn)動(dòng)時(shí),目標(biāo)函數(shù)z=kx+y取得最大值的一個(gè)最優(yōu)解為(1,2),則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)已知數(shù)列{an}滿(mǎn)足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N*)

(Ⅰ)試判斷數(shù)列{
an+2
2n+1
}
是否為等比數(shù)列?若不是,請(qǐng)說(shuō)明理由;若是,試求出通項(xiàng)an
(Ⅱ)如果a=1時(shí),數(shù)列{an}的前n項(xiàng)和為Sn.試求出Sn,并證明
1
S3
+
1
S4
+…+
1
Sn
1
10
(n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)如圖所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合{θ| -
π
4
<θ<
4
,  θ≠0,  θ≠
π
4
, θ≠
π
2
}
中,給θ取一個(gè)值,輸出的結(jié)果是sinθ,則θ值所在范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案