(本小題滿分8分)求橢圓的長軸和短軸的長、離心率、焦點的坐標(biāo).
10,8,3/5,(3,0)(-3,0)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線過橢圓的右焦點,拋物線:的焦點為橢圓的上頂點,且直線交橢圓兩點,點、 在直線上的射影依次為點、
(1)求橢圓的方程;
(2)若直線ly軸于點,且,當(dāng)變化時,探求的值是否為定值?若是,求出的值,否則,說明理由;
(3)連接,試探索當(dāng)變化時,直線是否相交于定點?若是,請求出定點的坐標(biāo),并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左、右頂點分別為,曲線是以橢圓中心為頂點,為焦點的拋物線.
(1)求曲線的方程;
(2)直線與曲線交于不同的兩點、.當(dāng)時,求直線 的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知橢圓經(jīng)過點(0,1),離心率
(I)求橢圓C的方程;
(II)設(shè)直線與橢圓C交于A,B兩點,點A關(guān)于x軸的對稱點為A’.試問:當(dāng)m變化時直線與x軸是否交于一個定點?若是,請寫出定點坐標(biāo),并證明你的結(jié)論;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知焦點在X軸的橢圓,焦點為、,焦距為,(1)求橢圓方程,(2)若是橢圓上一點,且,求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左、右焦點,過的直線與橢圓交于A、B兩點,且,成等差數(shù)列.
(1)求;
(2)若直線的斜率為1,橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓C:的兩個焦點為、,點在橢圓C上,且,
,.
(1) 求橢圓C的方程;
(2) 若直線過圓的圓心,交橢圓C于兩點,且、關(guān)于點對稱,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分.)直線y=kx+b與橢圓交于A,B兩點,記三角形ABO的面積為S
(1)求在k="0," 的條件下,S的最大值
(2)當(dāng),S=1時,求直線AB的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線  在y軸上的截距為m(m≠0),直線交橢圓于A、B兩個不同點。
(1)求橢圓的方程;
(2)求m的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案