【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上的最小值為﹣1,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:設(shè)x<0則﹣x>0,

由x>0,f(x)=﹣x2+2x,

可得f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x,

又f(x)為奇函數(shù),

即有f(﹣x)=﹣f(x),

于是x<0時(shí),f(x)=x2+2x=x2+mx,

可得m=2


(2)解:由f(﹣1)=1﹣2=﹣1,

又x>0時(shí),f(x)=﹣x2+2x=﹣1,

可解得x=1+

由于f(x)在區(qū)間[﹣1,a﹣2]上的最小值為﹣1,

作出y=f(x)的圖象可得,

,即

所以a∈(1,3+ ].


【解析】(1)設(shè)x<0則﹣x>0,運(yùn)用已知x>0的解析式,結(jié)合奇函數(shù)的定義,可得x<0的解析式,進(jìn)而得到m=2;(2)求得f(﹣1)=﹣1,再求x>0時(shí),f(x)=﹣1,解得x=1+ .畫出f(x)的圖象,由圖象可得a的不等式組,解不等式可得a的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識(shí),掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲,以及對(duì)函數(shù)奇偶性的性質(zhì)的理解,了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(﹣x)+f(x)=0,f(x+4)=f(x)滿足,且x∈(﹣2,0)時(shí),f(x)=2x+ ,則f(log220)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求的最大值;

(Ⅱ)若對(duì)恒成立,求的取值范圍;

(Ⅲ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動(dòng)點(diǎn)B、C分別在 、 上,且BC= ,則過A、B、C三點(diǎn)圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>4成立的x的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱垂直于底面, , 是棱的中點(diǎn).

證明:平面⊥平面

(Ⅱ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:sinθ=ρcos2θ,過點(diǎn)M(﹣1,2)的直線l: (t為參數(shù))與曲線C相交于A、B兩點(diǎn).求:
(1)線段AB的長度;
(2)點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC中平行于BC邊的中位線所在直線的一般式方程和截距式方程;
(2)BC邊的中線所在直線的一般式方程,并化為截距式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),離心率等于 ,它的一個(gè)短軸端點(diǎn)恰好是拋物線x2=8 y的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,m)、Q(2,﹣m)(m>0)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案