已知數(shù)列{an}滿(mǎn)足a1+2a2+22a3+…+2n-1an=n2(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
【答案】分析:(1)設(shè)數(shù)列{2n-1an}的前n項(xiàng)和為T(mén)n,然后根據(jù),求出2n-1an,從而求出數(shù)列{an}的通項(xiàng)公式;
(2)根據(jù)數(shù)列{an}的特點(diǎn)可知前n項(xiàng)和可利用錯(cuò)位相消法進(jìn)行求解,在等式兩邊同乘以公比,然后作差即可求出Sn
解答:解:(1)設(shè)數(shù)列{2n-1an}的前n項(xiàng)和為T(mén)n,則Tn=n2…(2分)∴
…(6分)
(2)由
②…(8分)
由②-①得,…(10分)
==…(12分)
點(diǎn)評(píng):本題主要考查了數(shù)列遞推式以及數(shù)列的求和,同時(shí)考查了利用錯(cuò)位相消法求數(shù)列的和,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿(mǎn)足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿(mǎn)足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案