分析:利用正弦函數(shù)的對(duì)稱性可判斷A、B,利用函數(shù)y=Asin(ωx+φ)的圖象變換可判斷C,利用正弦函數(shù)的周期性與單調(diào)性可判斷D.
解答:解:A.∵f(x)=sin(2x+
),
∴f(
)=sin(2×
+
)=sin
≠±1,故f(x)的圖象不關(guān)于直線x=
對(duì)稱,A錯(cuò)誤;
B.∵f(
)=sin(
+
)≠0,故f(x)的圖象不關(guān)于點(diǎn)(
,0)對(duì)稱,故B錯(cuò)誤;
C.g(x)=f(x+
)=sin[2(x+
)+
]=sin(2x+
),
g(-
)=0,g(
)=1,g(-
)≠g(
),
故g(x)不是偶函數(shù),故C錯(cuò)誤;
D,.f(x)=sin(2x+
)的最小正周期T=π,
由2kπ-
≤2x+
≤2kπ+
,得kπ-
≤x≤kπ+
(k∈Z),
∴其單調(diào)遞增區(qū)間為[kπ-
,kπ+
](k∈Z),
∵[0,
]?[kπ-
,kπ+
](k∈Z),
∴f(x)在區(qū)間[0,
]上單調(diào)遞增,故D正確.
故選:D.
點(diǎn)評(píng):本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查正弦函數(shù)的周期性與單調(diào)性、對(duì)稱性,屬于中檔題.