8.在△ABC中,AD是角A的平分線.
(1)用正弦定理或余弦定理證明:$\frac{BD}{DC}=\frac{BA}{AC}$;
(2)已知AB=2.BC=4,$cosB=\frac{1}{4}$,求AD的長.

分析 (1)由已知及正弦定理得:$\frac{BD}{sin∠BAD}$=$\frac{BA}{sin∠BDA}$,$\frac{DC}{sin∠DAC}=\frac{AC}{sin∠ADC}$,由sin∠BAD=sin∠DAC,結合∠BDA+∠ADC=π,可得sin∠BDA=sin∠ADC,即可得證$\frac{BD}{DC}=\frac{BA}{AC}$.
(2)由已知及余弦定理可求AC的值,由(1)及BD+DC=BC=4,可求BD的值,進而利用余弦定理可求AD的值.

解答 (本題滿分為12分)
解:(1)證明:在△ABC中,由正弦定理得:$\frac{BD}{sin∠BAD}$=$\frac{BA}{sin∠BDA}$.…(2分)
在△ADC中,由正弦定理得:$\frac{DC}{sin∠DAC}=\frac{AC}{sin∠ADC}$.…(4分)
∵∠BAD=∠DAC,
∴sin∠BAD=sin∠DAC,
又∵∠BDA+∠ADC=π,
∴sin∠BDA=sin∠ADC,
∴$\frac{BD}{DC}=\frac{BA}{AC}$.…(6分)
(2)在△ABC中,由余弦定理得:AC2=AB2+BC2-2AB•BC•cosB=22+42-2×$2×4×\frac{1}{4}$=16.
∴AC=4.…(8分)
由(1)知,$\frac{BD}{DC}=\frac{BA}{AC}$=$\frac{2}{4}$=$\frac{1}{2}$,
又BD+DC=BC=4,
∴BD=$\frac{4}{3}$.…(10分)
在△ABD中,由余弦定理得:AD2=AB2+BD2-2AB•BD•cosB=22+($\frac{4}{3}$)2-2×$2×\frac{4}{3}×\frac{1}{4}$=$\frac{40}{9}$.
∴AD=$\frac{2\sqrt{10}}{3}$.…(12分)

點評 本題主要考查了正弦定理,余弦定理在解三角形中的應用,考查了轉(zhuǎn)化思想和計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-bx (a,b∈R).若y=f(x)圖象上的點(1,-$\frac{11}{3}$)處的切線斜率為-4.
(1)求a、b的值;
(2)求y=f(x)的極大值;
(3)對?x∈[-2,3],都有f(x)-k<0,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y≥x}\\{x+y-6≤0}\\{2x-y-2≥0}\end{array}\right.$,且z=2x+y的最小值為m,最大值為n,則m+n=(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且橢圓上的點到焦點的距離最小值為1,若F為左焦點,A為左頂點,過F的直線交橢圓于M,N直線AM,AN交直線x=t(t<-2)于B,C兩點.
(1)求橢圓方程;
(2)若以BC為直徑的圓過F,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且橢圓C上的點到橢圓右焦點F的最小距離為$\sqrt{2}$-1.
(1)求橢圓C的方程;
(2)過點F且不與坐標軸平行的直線l與橢圓C交于A,B兩點,線段AB的中點為M,O為坐標原點,直線OA,OM,OB的斜率為kOA,kOM,kOB,若kOA,-kOM,kOB成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,則|$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.1B.$\sqrt{13}$C.13D.$\sqrt{7-2\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{m}$=1的一個焦點坐標為(3,0),則m=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.將函數(shù)f(x)=xsinx,當${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$時,f(x1)>f(x2)成立,下列結論正確的是(  )
A.x1>x2B.x1>|x2|C.x1<x2D.x${\;}_{1}^{2}$>x${\;}_{2}^{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知圓$C:{x^2}+{y^2}+2\sqrt{2}x-10=0$,點$A(\sqrt{2},0)$,P是圓上任意一點,線段AP的垂直平分線l和半徑CP相交于點Q.
(Ⅰ)當點P在圓上運動時,求點Q的軌跡方程;
(Ⅱ)直線$y=kx+\sqrt{2}$與點Q的軌跡交于不同兩點A和B,且$\overrightarrow{OA}•\overrightarrow{OB}=1$(其中O為坐標原點),求k的值.

查看答案和解析>>

同步練習冊答案