11.某班50人的一次競賽成績的頻數(shù)分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用各組區(qū)間中點(diǎn)值,可估計(jì)本次比賽該班的平均分為( 。
A.56B.68C.78D.82

分析 由已知條件,利用平均數(shù)公式計(jì)算即可.

解答 解:某班50人的一次競賽成績的頻數(shù)分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,
利用組中值可估計(jì)本次比賽該班的平均分為:
$\overline{x}$=$\frac{1}{50}$×(65×3+75×16+85×24+95×7)=82.
故選:D.

點(diǎn)評 本題考查了加權(quán)平均分的計(jì)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足${b_1}=1,{b_2}=\frac{1}{2}$,若n∈N*時(shí),anbn+1-bn+1=nbn
(Ⅰ)求{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)${C_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求{Cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$a={2^{\frac{π}{8}}}$,${(\frac{1}{2})^b}={log_{\frac{1}{π}}}b$,$c={log_2}sin\frac{π}{3}$,則(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,c=\sqrt{{a^2}-{b^2}},e=\frac{c}{a})$,其左、右焦點(diǎn)分別為F1,F(xiàn)2,關(guān)于橢圓有以下四種說法:
(1)設(shè)A為橢圓上任一點(diǎn),其到直線${l_1}:x=-\frac{a^2}{c},{l_2}:x=\frac{a^2}{c}$的距離分別為d2,d1,則$\frac{{|A{F_1}|}}{d_1}=\frac{{|A{F_2}|}}{d_2}$;
(2)設(shè)A為橢圓上任一點(diǎn),AF1,AF2分別與橢圓交于B,C兩點(diǎn),則$\frac{{|A{F_1}|}}{{|{F_1}B|}}+\frac{{|A{F_2}|}}{{|{F_2}C|}}≥\frac{{2(1+{e^2})}}{{1-{e^2}}}$(當(dāng)且僅當(dāng)點(diǎn)A在橢圓的頂點(diǎn)取等);
(3)設(shè)A為橢圓上且不在坐標(biāo)軸上的任一點(diǎn),過A的橢圓切線為l,M為線段F1F2上一點(diǎn),且$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{{|{F_1}M|}}{{|M{F_2}|}}$,則直線AM⊥l;
(4)面積為2ab的橢圓內(nèi)接四邊形僅有1個(gè).
其中正確的有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線$x+\sqrt{3}y-1=0$的傾斜角為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,在正方體ABCD-A1B1C1D1中,AA1,AB,CC1的中點(diǎn)分別為E,F(xiàn),G,則EF與A1G所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=3x+a的反函數(shù)y=f-1(x),若函數(shù)y=f-1(x)的圖象經(jīng)過(4,1),則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|x|(2-x)
(1)作出函數(shù)f(x)的大致圖象,并指出其單調(diào)區(qū)間;
(2)若函數(shù)f(x)=c恰有三個(gè)不同的解,試確定實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若矩陣$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array})$滿足:a11,a12,a21,a22∈{0,1},且$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$=0,則這樣的互不相等的矩陣共有(  )
A.2個(gè)B.6個(gè)C.8個(gè)D.10個(gè)

查看答案和解析>>

同步練習(xí)冊答案