數(shù)列{an}的前n項和記為Sn.已知an=5Sn-3(n∈N).求a1a3+…+a2n1)的值。

解:由Sna1a2+…+anan=Sn-Sn1n≥2),a1=S1,?

 

由已知an=5Sn-3   得an1=5Sn1-3.于是 anan1=5(Sn-Sn1)=5an,?

 

所以an=-an1.?

 

a1=5S1-3,得a1

 

所以,數(shù)列{an}是首項a1,公比q=-的等比數(shù)列.

 

由此知數(shù)列a1,a3a5,…,a2n1,…?

是首項為a1,公比為(-2的等比數(shù)列.???

 

a1a3a5+…+a2n1

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a2=5,S5=45.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
4anan+1
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列說法
①若數(shù)列〔an〕的前n項和是Sn=an2+bn+c,其中abc是常數(shù),則數(shù)列〔an〕一定不是等差數(shù)列:
②若
AB
=3
a
CD
=-2
a
,且|
AD
|=|
BC
|,則四邊形ABCD是等腰梯形;
③“x=-1”是“x2-5x-6=0”的必要不充分條件;
④用數(shù)學(xué)歸納法證明命題:
1
2
+
1
4
+
1
8
+…+
1
2n
<1,在第二步由n=k到n=k+1時,不等式左邊增加了l項.
其中正確說法的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=5,a4=-1;設(shè)數(shù)列{丨an丨}的前n項和為Sn,則S6=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均不相同的等差數(shù)列{an}的前四項和Sn=14,且a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{
1anan+1
}的前n項和,求T2012的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=nan-2n(n-1).
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求出an的表達(dá)式;
(Ⅱ)設(shè)數(shù)列{
1anan+1
}的前n項和Tn,試求Tn的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案