【題目】已知函數(shù)只有一個零點,且這個零點為正數(shù),則實數(shù)的取值范圍是____.
【答案】
【解析】
先運用導數(shù)得出函數(shù)的單調性和單調區(qū)間,再結合函數(shù)圖象求出a的取值范圍.
解:令=3x2﹣3a2=3(x﹣a)(x+a)=0,解得x1=﹣a,x2=a,
其中a>0,所以函數(shù)的單調性和單調區(qū)間如下:
x∈(﹣∞,﹣a),f(x)遞增;x∈(﹣a,a),f(x)遞減;x∈(a,+∞),f(x)遞增.
因此,f(x)在x=﹣a處取得極大值,在x=a處取得極小值,
結合函數(shù)圖象,要使f(x)只有一個零點x0,且x0>0,只需滿足:
f(x)極大值=f(﹣a)<0,即﹣a3+3a3﹣6a2+4a<0,
整理得a(a﹣1)(a﹣2)<0,解得,a∈(1,2),
故答案為:(1,2)
科目:高中數(shù)學 來源: 題型:
【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計計算.
某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實際所付金額為____元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,從一個面積為的半圓形鐵皮上截取兩個高度均為的矩形,并將截得的兩塊矩形鐵皮分別以,為母線卷成兩個高均為的圓柱(無底面,連接部分材料損失忽略不計).記這兩個圓柱的體積之和為.
(1)將表示成的函數(shù)關系式,并寫出的取值范圍;
(2)求兩個圓柱體積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)和二次函數(shù)滿足:,,
(1)求和的解析式;
(2)若對于,,均有成立,求a的取值范圍;
(3)設,在(2)的條件下,討論方程的解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個說法中,錯誤的選項有( ).
A.若函數(shù)在上是單調增函數(shù),在上也是單調增函數(shù),則函數(shù)在R上是單調增函數(shù)
B.已知函數(shù)的解析式為,它的值域為,這樣的函數(shù)有無數(shù)個
C.把函數(shù)的圖像向右平移個單位長度,就得到了函數(shù)的圖像
D.若函數(shù)為奇函數(shù),則一定有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com