16.已知圓M1:(x+4)2+y2=25,圓M2:x2+(y-3)2=1,一動(dòng)圓P與這兩個(gè)圓都外切,試求動(dòng)圓圓心P的軌跡.

分析 設(shè)動(dòng)圓P的半徑為r,然后根據(jù)動(dòng)圓與圓M1:(x+4)2+y2=25,圓M2:x2+(y-3)2=1都外切,得|PM1|=5+r,|PM2|=1+r,再兩式相減消去參數(shù)r,則滿足雙曲線的定義,問題解決.

解答 解:設(shè)動(dòng)圓的圓心為P,半徑為r,
而圓M1:(x+4)2+y2=25的圓心為O(-4,0),半徑為5;
圓M2:x2+(y-3)2=1的圓心為F(0,3),半徑為1.
依題意得|PM1|=5+r,|PM2|=1+r,
則|PM1|-|PM2|=(5+r)-(1+r)=4<|M1M2|,
所以點(diǎn)P的軌跡是雙曲線的右支.

點(diǎn)評(píng) 本題主要考查雙曲線的定義.解題的關(guān)鍵是根據(jù)已知條件中未知圓與已知圓的位置關(guān)系,結(jié)合“圓的位置關(guān)系與半徑及圓心距的關(guān)系”,探究出動(dòng)圓圓心P的軌跡.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將正奇數(shù)排成如圖所示的三角形數(shù)表:
其中第i行第j個(gè)數(shù)記為aij(i、j∈N*),例如a42=15,若aij=2015,則i+j=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知全集U={1,2,3,4,5},A={1,2,3},那么∁UA的子集個(gè)數(shù)有4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在邊長(zhǎng)為5+$\sqrt{2}$的正方形紙片中剪下如圖所示的扇形和圓,使它恰好成同一圓錐的側(cè)面和底面,求此圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.關(guān)于x的不等式ax2-(a+1)x+1<0(a<0)的解集為{x|x>1或x<$\frac{1}{a}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a為正實(shí)數(shù),函數(shù)f(x)=x2-2x+a,且對(duì)任意的x∈[0,a],都有f(x)∈[-a,a],則實(shí)數(shù)a的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:4x2+y2=1,直線l:y=kx+m,若直線l與橢圓C交于點(diǎn)A,B.
(1)若k=1,橢圓存在兩點(diǎn)M,N關(guān)于直線l對(duì)稱,求實(shí)數(shù)m的取值范圍;
(2)若m=$\frac{1}{2}$,橢圓存在兩點(diǎn)P,Q關(guān)于直線l對(duì)稱,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)直線l的方程為y=kx+b(其中k的值與b無關(guān)),圓M的方程為x2+y2-2x-4=0.
(1)如果不論k取何值,直線l與圓M總有兩個(gè)不同的交點(diǎn),求b的取值范圍;
(2)b=1,l與圓交于A,B兩點(diǎn),求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)(2,3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為(-2,-3);點(diǎn)(2,3)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(-2,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案