20.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{4x+3y-12≤0}\\{y-2≥0}\end{array}\right.$,則z=$\frac{3x-y+2}{x+1}$的最大值為( 。
A.$\frac{9}{5}$B.$\frac{3}{2}$C.$\frac{25}{16}$D.$\frac{9}{4}$

分析 利用分式函數(shù)的性質(zhì),轉(zhuǎn)化為直線的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:由約束條件得到可行域如圖:則z=$\frac{3x-y+2}{x+1}$=3-$\frac{y+1}{x+1}$,
則z的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)M(-1,-1)的斜率的最小值的相反數(shù)與3的和,
由圖象可知區(qū)域邊界點(diǎn)A(1.5,2)連接的直線斜率最小為$\frac{6}{5}$,所以z的最大值為3-$\frac{6}{5}$=$\frac{9}{5}$;
故選:A.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,關(guān)鍵是把目標(biāo)函數(shù)變形,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,正方形ABCD所在平面與四邊形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°.
(1)求證:EF⊥平面BCE;
(2)設(shè)線段CD、AE的中點(diǎn)分別為P、M,求PM與BC所成角的正弦值;
(3)求二面角F-BD-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,該算法輸出的結(jié)果是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)F1,F(xiàn)2分別是橢圓$E:{x^2}+\frac{y^2}{b^2}=1(0<b<1)$的左、右焦點(diǎn),已知點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),若|AF1|=2|BF1|,AF2⊥x軸,則橢圓E的方程為(  )
A.${x^2}+\frac{{3{y^2}}}{2}=1$B.${x^2}+\frac{{6{y^2}}}{5}=1$C.${x^2}+\frac{{5{y^2}}}{4}=1$D.${x^2}+\frac{{8{y^2}}}{7}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z滿足z(1-i)=-1-i,則|z+2|=( 。
A.3B.1C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過三個(gè)點(diǎn)A(1,3),B(4,2),C(1,-1)的圓交y軸于M,N兩點(diǎn),則|MN|=(  )
A.2$\sqrt{6}$B.3$\sqrt{6}$C.2D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間(1,2)內(nèi)隨機(jī)取個(gè)實(shí)數(shù)a,則直線y=2x,直線x=a與x軸圍成的面積大于$\frac{16}{9}$的概率是( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:$\frac{x^2}{k}+\frac{y^2}{4-k}=1$表示焦點(diǎn)x在軸上的橢圓,命題q:$\frac{x^2}{k-1}+\frac{y^2}{k-3}=1$表示雙曲線,p∨q為真,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A(3,2),B(-4,1),C(0,-1),點(diǎn)Q線段AB上的點(diǎn),則直線CQ的斜率取值范圍是$(-∞,-\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

同步練習(xí)冊答案