5.對(duì)于集合{a1,a2,…,an}和常數(shù)a0,定義:w=$\frac{sin({a}_{1}-{a}_{0})^{2}+sin({a}_{2}-{a}_{0})^{2}+…+sin({a}_{n}-{a}_{0})^{2}}{n}$為集合{a1,a2,…,an}相對(duì)于a0的“正弦方差”,則集合{$\frac{π}{2}$,$\frac{5π}{6}$,$\frac{7π}{6}$}相對(duì)a0的“正弦方差”為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{a}_{0}}{4}$D.$\frac{{a}_{0}}{3}$

分析 根據(jù)新定義,將a1=$\frac{π}{2}$,a2=$\frac{5π}{6}$,a3=$\frac{7π}{6}$,n=3代入計(jì)算可得結(jié)論.

解答 解:根據(jù)新定義:w=$\frac{sin({a}_{1}-{a}_{0})^{2}+sin({a}_{2}-{a}_{0})^{2}+…+sin({a}_{n}-{a}_{0})^{2}}{n}$
為集合{a1,a2,…,an}相對(duì)于a0的“正弦方差”
∴集合{$\frac{π}{2}$,$\frac{5π}{6}$,$\frac{7π}{6}$}相對(duì)a0的“正弦方差”為:
W=$\frac{si{n}^{2}(\frac{π}{2}-{a}_{0})+si{n}^{2}(\frac{5π}{6}-{a}_{0})+si{n}^{2}(\frac{7π}{6}-{a}_{0})}{3}$
=$\frac{3-cos2{a}_{0}-cos(\frac{5π}{3}-2{a}_{0})-cos(\frac{7π}{3}-2{a}_{0})}{6}$=$\frac{1}{2}$.
故選B.

點(diǎn)評(píng) 本題考察了對(duì)新定義的理解和運(yùn)用能力,同時(shí)考察了二倍角的化簡(jiǎn)計(jì)算能力.屬于中檔題題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的長(zhǎng)軸長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上的排列規(guī)律,第20行第2個(gè)數(shù)是192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.確定函數(shù)y=x+$\frac{1}{x}$(x>0)在區(qū)間(1,+∞)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,A為銳角且f(A)=$\frac{\sqrt{3}}{2}$,D為BC中點(diǎn),AD=3,AB=$\sqrt{3}$,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}中,a1=1,函數(shù)f(x)=-$\frac{2}{3}$x3+$\frac{a_n}{2}$x2-3an-1x+4在x=1處取得極值,則an=2•3n-1-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè){an}是遞增等差數(shù)列,前三項(xiàng)的和是12,前三項(xiàng)的積為48,則a3=( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若α∈(0,π),且3cos2α=sin($\frac{π}{4}$-α),則sin2α的值為( 。
A.1或-$\frac{17}{18}$B.$\frac{17}{18}$C.1D.$-\frac{17}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.?dāng)?shù)列{an}滿足a1=1,an+1=$\sqrt{\frac{{{a_n}^2}}{{4{a_n}^2+1}}}$(n∈N+),
(1)證明$\left\{{\frac{1}{{{a_n}^2}}}\right\}$為等差數(shù)列并求an;
(2)設(shè)Sn=a12+a22+…+an2,bn=S2n+1-Sn,是否存在最小的正整數(shù)m,使對(duì)任意n∈N+,有bn<$\frac{m}{25}$成立?設(shè)若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案