已知數(shù)列-5,-3,-1,1…是等差數(shù)列,判斷52,2n+7(n∈N)是否為該數(shù)列的某項(xiàng)?若是,是第幾項(xiàng)?

答案:
解析:

解 由題意知,等差數(shù)列的通項(xiàng)公式為=-5+(n-1)×2=2n-7.若52=2n-7,則n=N,故52不是該數(shù)列的項(xiàng),而2n+7=2(n+7)-7,故2n+7是該數(shù)列的第n+7項(xiàng).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若f(x)=2x-1,求證:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若f(x)=2x-1,求證:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1);
(Ⅲ)令Tn=
1
2
(b1a+b2a2+b3a3+…+bnan)
(a>0),求同時滿足下列兩個條件的所有a的值:①對于任意正整數(shù)n,都有Tn
1
6
;②對于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0時,Tn>m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1
,且已知f(x)=2x-1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
;
(3)求證:
f(2)
a1
+
f(3)
a2
+
f(4)
a3
+…+
f(n+1)
an
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
1
anan+1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1,
求證:①對于任意正整數(shù)n,都有Tn
1
6
.②對于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0時,Tn>m.

查看答案和解析>>

同步練習(xí)冊答案