如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線(xiàn)為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線(xiàn)段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

【答案】分析:(1)要求平面OBC轉(zhuǎn)過(guò)角,即求平面OBC與平面α所成的角度,可轉(zhuǎn)化為求平面ABC與平面COB所成的角;在四面體中,取BC中點(diǎn)為E,連接AE,EO,則BC⊥AE,BC⊥EO,∠AEO即為所求的轉(zhuǎn)動(dòng)角;根據(jù)AE=EO=,AO=2,即可求出∠AEO
(2)法一:設(shè)A在平面OBC上射影為G,若O1P⊥平面OBC,則O1P∥AG,設(shè)O1P交OE于H,則由OH:OO1=OO1:OE,可求得OH=OG
故H與G重合時(shí),O1P⊥平面OBC.
法二:以O(shè)1為原點(diǎn),分別以O(shè)1C1、O1O、O1E所在直線(xiàn)為x,y,z軸建立空間直角坐標(biāo)系,設(shè)
則由可求z,H與G重合時(shí),O1P⊥平面OBC.
解答:解:(1)∵平面ABC∥平面α
平面ABC∩平面COB=BC
取BC中點(diǎn)為E,連接AE,EO,則BC⊥AE,BC⊥EO.
故∠AEO即為所求的轉(zhuǎn)動(dòng)角
在正四面體中,AE=EO=,AO=2,
所以:COS∠AEO==
∴sin∠EOF=
故所求轉(zhuǎn)過(guò)角的正弦值為
(2)解法一:在Rt△OBB1中,OB=2BB1
故BB1=O1E=1,,.設(shè)A在平面OBC上射影為G,
若O1P⊥平面OBC,則O1P∥AG,
設(shè)O1P交OE于H,OH:OO1=OO1:OE,
,又,
故H與G重合時(shí),O1P⊥平面OBC.
解法二:以O(shè)1為原點(diǎn),分別以O(shè)1C1、O1O、O1E所在直線(xiàn)為x,y,z軸建立空間直角坐標(biāo)系,
,C(1,0,1),B(-1,0,1),,
設(shè)

得z=2.…(13分)
故H與G重合時(shí),O1P⊥平面OBC.
點(diǎn)評(píng):本題主要考查了二面角得平面角得求解,直線(xiàn)與平面垂直的性質(zhì)定理得應(yīng)用,要注意向量法在解題中應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大連一模)如圖,正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為
2
,D為A1C1中點(diǎn).
(Ⅰ)求證;BC1∥平面AB1D;
(Ⅱ)三棱錐B-AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線(xiàn)為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線(xiàn)段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線(xiàn)為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線(xiàn)段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江西省贛州三中、于都中學(xué)高三聯(lián)合考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線(xiàn)為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線(xiàn)段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案