過雙曲線
y2
3
-x2=1的下焦點(diǎn)F作拋物線C:x2=2py(p>0)的兩條切線,切點(diǎn)分別為AB,若FA⊥FB,則拋物線的方程為( 。
A、x2=2y
B、x2=4y
C、x2=6y
D、x2=8y
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的下焦點(diǎn),由條件判斷出切線方程為y=±x-2,代入拋物線方程,運(yùn)用判別式為0,解方程即可得到拋物線方程.
解答: 解:雙曲線
y2
3
-x2=1的下焦點(diǎn)F(0,-2),
由FA⊥FB,
以及拋物線的對稱性可得,
直線FA,F(xiàn)B的斜率為1和-1,
即有切線方程為y=±x-2,
代入拋物線方程x2=2py,可得,x2±2px+4p=0,
由判別式4p2-16p=0,
解得,p=4,
則有拋物線方程為x2=8y,
故選:D.
點(diǎn)評:本題考查雙曲線的性質(zhì),考查拋物線的性質(zhì)和方程,考查直線方程和拋物線方程聯(lián)立,消去未知數(shù),運(yùn)用判別式為0,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了測量兩座山峰上兩點(diǎn)P、Q之間的距離,選擇山坡上一段長度為300
3
米且和P,Q兩點(diǎn)在同一平面內(nèi)的路段AB的兩個端點(diǎn)作為觀測點(diǎn),現(xiàn)測得四個角的大小分別是∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,可求得P、Q兩點(diǎn)間的距離為
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,求下列各式的值.
(1)
2cosα-3sinα
sinα+2cosα
  
(2)1+3sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱的底面邊長為2,體積為
3
,則直線B1C與底面ABC所成的角的大小為
 
(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
3
-
y2
sin(2θ+
π
4
)
=1的曲線是橢圓,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖⊙O的直徑為CA,OB⊥CA,M在OA上,連接BM交⊙O于N,以N為切點(diǎn),作⊙O的切線交CA延長線于P.
(Ⅰ)求證PM=PN;
(Ⅱ)若⊙O的半徑為2,PM=
5
,求AM長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log3
3
 
+log816+4log413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:(
a
+
b
2=|
a
|2+2
a
b
+|
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)遞增數(shù)列{an}滿足al=1,al、a2、a5成等比數(shù)列,且對任意n∈N*,函數(shù).f( x)=(an+2-an+1)x-(an-an-1)sinx+ancosx滿足f′(π)=0.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn,bn=
1
Sn
,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn<2.

查看答案和解析>>

同步練習(xí)冊答案