將函數(shù)y=sinx圖象上每一點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將整個圖象沿x軸向右平移
π
4
個單位,得到的函數(shù)解析式為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意函數(shù)的圖象變換,按照變換方式逐步求出變化后的函數(shù)解析,最終得到所求函數(shù)的解析式.
解答: 解:函數(shù)y=sinx的圖象,把圖象上每個點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)保持不變),
得到函數(shù)y=sin
1
2
x,
再將函數(shù)圖象沿x軸向右平移
π
4
個單位,
得到函數(shù)y=sin[
1
2
(x-
π
4
)]=sin(
1
2
x-
π
8
)的圖象.
故答案為:y=sin(
1
2
x-
π
8
點評:本題是中檔題,考查三角函數(shù)的平移原則為左加右減上加下減.注意圖象的逆運用,考查邏輯推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx+2siny=1,且siny+cos2x-m≥0對任意的x,y∈R恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對一切正實數(shù)x恒成立,求t的取值范圍;
(2)設(shè)g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程
1-x2
=kx+2有惟一的實數(shù)解,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機變量X的分布列為
X
X P
1 2 3
P
3
5
3
10
1
10
則X的數(shù)學(xué)期望E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人5次上班途中所花的時間(單位:分鐘)分別為x,8,10,11,9.已知這組數(shù)據(jù)的平均數(shù)為10,則這組數(shù)據(jù)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列數(shù)組:(1),(1,2),(1,2,1),(1,2,1,2),(1,2,1,2,1),(1,2,1,2,1,2),…按照此規(guī)律進行下去.記第n個中各數(shù)的和為f(n)(n∈N*),則f(n)+f(n+1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①設(shè)z1,z2,z3∈C,若(z1-z22+(z2-z32=0,則z1=z3
②兩個復(fù)數(shù)不能比較大。
③若z∈C則z-
z
是純虛數(shù);
④設(shè)z1,z2∈C,則“z1+z2∈R”是“z1與z2互為共軛復(fù)數(shù)”的必要不充分條件.
其中,真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=2x+cosx在(-∞,+∞)上(  )
A、是增函數(shù)B、是減函數(shù)
C、有最大值D、有最小值

查看答案和解析>>

同步練習(xí)冊答案