11.已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{n+2}$,則$\frac{{a}_{5}}{_{5}}$=( 。
A.1B.$\frac{15}{11}$C.-1D.$\frac{17}{12}$

分析 由等差數(shù)列的性質(zhì)與求和公式可得$\frac{{a}_{5}}{_{5}}$=$\frac{{S}_{9}}{{T}_{9}}$.

解答 解:$\frac{{a}_{5}}{_{5}}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{9(_{1}+_{9})}{2}}$=$\frac{{S}_{9}}{{T}_{9}}$=$\frac{2×9-3}{9+2}$=$\frac{15}{11}$,
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),且SE=2EB.
(1)證明:DE⊥平面SBC;
(2)證明:求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤a}\\{x+2y≥1}\end{array}\right.$,若目標(biāo)函數(shù)z=2x+6y的最小值為2,則a=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\vec a$=(cosα,-1),$\overrightarrow$=(sinα,$\frac{1}{2}$)
若$\vec a∥\vec b$,則tan(α-$\frac{π}{4}$)=-3.
若$\overrightarrow{a}$⊥$\overrightarrow$,則tan(α-$\frac{π}{4}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}是一個(gè)等差數(shù)列,且a2=-1,a5=5.
(1)求{an}的通項(xiàng)an;       
(2)若bn=an+2n,求{bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+2n,n∈N*,令bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,則{bn} 的前n項(xiàng)和Tn$\frac{n}{3(2n+3)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸的一個(gè)頂點(diǎn)與一個(gè)焦點(diǎn)的距離為2,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)過橢圓M的中心作直線l與橢圓交于P、Q兩點(diǎn),且∠PF2Q=$\frac{2π}{3}$,設(shè)橢圓的左、右焦點(diǎn)分別為F1、F2
①判斷四邊形F1PF2Q的形狀;
②求△PF2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2sin(x+$\frac{π}{3}$)cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)=$\frac{\sqrt{3}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知0<α<$\frac{π}{2}$<β<π,$\vec a$=(cosα,3),$\vec b$=(-4,sinα),且$\vec a$⊥$\vec b$,cos(β-α)=$\frac{{\sqrt{2}}}{10}$.
( I)求tanα和sinα的值;     
( II)求sinβ的值.

查看答案和解析>>

同步練習(xí)冊答案