動(dòng)點(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記點(diǎn)的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.
(I);(II).
【解析】
試題分析:(I)找出題中的相等關(guān)系,列出化簡即得曲線的方程;(II)先用弦長公式得,由點(diǎn)到直線距離公式得的高,列出面積表達(dá)式,最后選擇合適的方法求面積的最大值.
試題解析:(I)設(shè)是點(diǎn)到直線的距離,根據(jù)題意,點(diǎn)的軌跡就是集合
由此得
將上式兩邊平方,并化簡得
即
所以曲線的方程為
(II)由得,
即.
記,
則.
于是
又原點(diǎn)到直線的距離,
所以(當(dāng)時(shí)取等號(hào))
所以面積的最大值為.
考點(diǎn):1、曲線方程求法;2、直線與圓錐曲線位置關(guān)系;3、解析幾何最值問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,設(shè)動(dòng)點(diǎn)的軌跡是曲線.
(1)求曲線的軌跡方程;
(2) 設(shè)直線:與曲線相交于、兩點(diǎn),已知圓經(jīng)過原點(diǎn)和兩點(diǎn),求圓的方程,并判斷點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)是否在圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州黔東南州高三第二次模擬(5月)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試問:當(dāng)變化時(shí),直線與軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省韶關(guān)市高三下學(xué)期第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
在直角坐標(biāo)系中,動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離之比是,設(shè)動(dòng)點(diǎn)的軌跡為,是動(dòng)圓上一點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)曲線上的三點(diǎn)與點(diǎn)的距離成等差數(shù)列,若線段的垂直平分線與軸的交點(diǎn)為,求直線的斜率;
(3)若直線與和動(dòng)圓均只有一個(gè)公共點(diǎn),求、兩點(diǎn)的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com