【題目】已知命題,;命題q:函數(shù)有兩個(gè)零點(diǎn).

1)若為假命題,求實(shí)數(shù)的取值范圍;

2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

【答案】1;(2

【解析】

先分別求出p為真、q為真時(shí),m的取值范圍,(1)若為假命題,可知p,q均為假命題,進(jìn)而可求得m的取值范圍;(2)若為真命題,為假命題,可知p,q一真一假,進(jìn)而可求得m的取值范圍.

p為真,令,問題轉(zhuǎn)化為求函數(shù)的最小值,

,解得

函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

,故

q為真,則,即

1)若為假命題.則p,q均為假命題,實(shí)數(shù)m的取值范圍為.

2)若為真命題,為假命題,則p,q一真一假.

pq假,則實(shí)數(shù)m滿足,即;

pq真,則實(shí)數(shù)m滿足

綜上所述,實(shí)數(shù)m的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,且.

1)求的解析式;

2)設(shè)函數(shù),當(dāng)時(shí),求的最小值;

3)設(shè)函數(shù),若對(duì)任意,總存在,使得成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次人才招聘會(huì)上,有一家公司的招聘員告訴你,我們公司的收入水平很高”“去年,在50名員工中,最高年收入達(dá)到了200萬,員工年收人的平均數(shù)是10",而你的預(yù)期是獲得9萬元年薪.

1)你是否能夠判斷年薪為9萬元的員工在這家公司算高收入者?

2)如果招聘員繼續(xù)告訴你,員工年收入的變化范圍是從3萬到200,這個(gè)信息是否足以使你作出自己是否受聘的決定?為什么?

3)如果招聘員繼續(xù)給你提供了如下信息,員工收人的第一四分位數(shù)為4.5萬,第三四分位數(shù)為9.5萬,你又該如何使用這條信息來作出是否受聘的決定?

4)根據(jù)(3)中招聘員提供的信息,你能估計(jì)出這家公司員工收入的中位數(shù)是多少嗎?為什么平均數(shù)比估計(jì)出的中位數(shù)高很多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=3ax22a+cx+ca0a,cR

1)設(shè)ac0,若fx)>c22c+a對(duì)x[1,+∞]恒成立,求c的取值范圍;

2)函數(shù)fx)在區(qū)間(0,1)內(nèi)是否有零點(diǎn),有幾個(gè)零點(diǎn)?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,//,,為正三角形. 若,且與底面所成角的正切值為.

(1)證明:平面平面

(2)是線段上一點(diǎn),記,是否存在實(shí)數(shù),使二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】喜羊羊家族的四位成員與灰太狼、紅太狼進(jìn)行談判,通過談判他們握手言和,準(zhǔn)備一起照合影像(排成一排).

(1)要求喜羊羊家族的四位成員必須相鄰,有多少種排法?

(2)要求灰太狼、紅太狼不相鄰,有多少種排法?

(3)記灰太狼和紅太狼之間的喜羊羊家族的成員個(gè)數(shù)為,求的概率分布表和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖設(shè)計(jì)一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-5:不等式選講】

已知函數(shù)

(Ⅰ)求不等式

(Ⅱ)若的圖像與直線圍成圖形的面積不小于14,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓C上的一點(diǎn),橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓CB,D兩點(diǎn),且A、BD三點(diǎn)互不重合.

1)求橢圓C的方程;

2)若分別為直線ABAD的斜率,求證:為定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案