如圖所示,在直四棱柱ABCD-A1B1C1D1中,當(dāng)?shù)酌嫠倪呅蜛1B1C1D1滿足條件
 
時(shí),有A1C⊥B1D1(注:填上你認(rèn)為正確的一種情況即可,不必考慮所有可能的情況).
考點(diǎn):直線與平面垂直的性質(zhì)
專題:開放型,空間位置關(guān)系與距離
分析:由假設(shè)A1C⊥B1D1,結(jié)合直四棱柱的性質(zhì)及線面垂直的判定和性質(zhì)定理,我們易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的幾何特征可判斷出四邊形ABCD為菱形,又由本題為開放型題目上,故答案可以不唯一.
解答: 解:若A1C⊥B1D1,由四棱柱ABCD-A1B1C1D1為直四棱柱,
AA1⊥B1D1,易得B1D1⊥平面AA1BB1,
則A1C1⊥B1D1,即AC⊥BD,
則四邊形ABCD為菱形,
故答案為:AC⊥BD或四邊形ABCD為菱形.
點(diǎn)評:本題主要考查了空間中直線與直線之間的位置關(guān)系,屬于知識(shí)的考查,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我國發(fā)射的第一顆人造地衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,設(shè)地球的半徑為R,衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為m,n.求衛(wèi)星軌道的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)x,y滿足
2
x
+
1
y
=1,若m=x+y,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=sin(-1),b=cos(-1),c=tan(-1),則a,b,c的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

作下列函數(shù)在長度為一個(gè)周期的閉區(qū)間上的簡圖.
(1)y=sin4x;    
(2)y=sin
3
2
x;    
(3)y=sin(3x+
π
4
);    
(4)y=
3
2
sin(
x
3
-
π
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有參加CBA2013~2014賽季的甲、乙兩支球隊(duì),統(tǒng)計(jì)兩隊(duì)隊(duì)員的身高如下(單位:cm):
甲隊(duì)隊(duì)員:194,187,199,207,203,205,209,199,183,215,219,206,201,208;
乙隊(duì)隊(duì)員:179,192,218,223,187,194,205,207,185,197,199,209,214,189.
(1)用莖葉圖表示兩隊(duì)隊(duì)員的身高;
(2)根據(jù)莖葉圖判斷哪個(gè)隊(duì)隊(duì)員的身高更整齊一些.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

紅旗化肥廠生產(chǎn)A、B兩種化肥.某化肥銷售店從該廠買進(jìn)一批化肥,每種化肥至少購買5噸,每噸出廠價(jià)分別為2萬元、1萬元.且銷售店老板購買
化肥資金不超過30萬元.
(Ⅰ)若化肥銷售店購買A、B兩種化肥的數(shù)量分別是x(噸)、y(噸),寫出x、y滿足的不等式組;并在給定的坐標(biāo)系中畫出不等式組表示的平面區(qū)域(用陰影表示);
(Ⅱ)假設(shè)該銷售店購買的A、B這兩種化肥能全部賣出,且每噸化肥的利潤分別為 0.3萬元、0.2萬元,問銷售店購買A、B兩種化肥各多少噸時(shí),才能獲得最大利潤,最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡:1-tanα•sin(α-2π)•sin(
π
2
+α);
(2)若α=-
17
4
π,求(1)式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x(1-x)>0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案