函數(shù)y=2sin(
π
3
-x)-cos(
π
6
+x)(x∈(0,π))
,則y(  )
分析:利用三角函數(shù)的恒等變換化簡函數(shù)y的解析式為-sin(x-
π
3
),由 0<x<π,可得-
π
3
<x-
π
3
3
,從而求得sin(x-
π
3
)的值域,進而求得函數(shù)y的值域.
解答:解:∵函數(shù)y=2sin(
π
3
-x)-cos(
π
6
+x)=2(
3
2
cosx-
1
2
sinx)-(
3
2
cosx-
1
2
sinx)=
3
2
cosx-
1
2
sinx=sin(
π
3
-x)=-sin(x-
π
3
),
∵0<x<π,∴-
π
3
<x-
π
3
3
,∴-
1
2
<sin(x-
π
3
)≤1,∴-1≤-sin(x-
π
3
)<
1
2

故函數(shù) y有最小值-1,但無最大值,
故選A.
點評:本題主要考查正弦函數(shù)的定義域和值域,三角函數(shù)的恒等變換及化簡求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,點P是函數(shù)y=2sin(ωx+φ)(x∈R,ω>0)圖象的最高點,M、N是圖象與x軸的交點,若
PM
PN
=0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(2x-
π
6
)
的圖象( 。
A、關于原點成中心對稱
B、關于y軸成軸對稱
C、關于(
π
12
,0)
成中心對稱
D、關于直線x=
π
12
成軸對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-2sin(2x+
π3
)
取得最大值時所對應x的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關于點(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個命題中正確的有
 
(填寫正確命題前面的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=2sin3x的圖象向右平移
π
6
個單位后得到函數(shù)y=2sin(x-
π
6
)
的圖象;q:函數(shù)y=sin2x+2sinx-1的最大值為1.則下列命題中真命題為( 。

查看答案和解析>>

同步練習冊答案