蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以表示第幅圖的蜂巢總數(shù).則=___;=_______.

 

【答案】

37,f(n)=3n2-3n+1

【解析】解:(1)由于f(2)-f(1)=7-1=6,

f(3)-f(2)=19-7=2×6,

f(4)-f(3)=37-19=3×6,所以f(4)=37

f(5)-f(4)=61-37=4×6,

因此,當(dāng)n≥2時(shí),有f(n)-f(n-1)=6(n-1),

所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).
(1)試給出f(4),f(5)的值,并求f(n)的表達(dá)式(不要求證明);
(2)證明:
1
f(1)
+
1
f(2)
+
1
f(3)
+…+
1
f(n)
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=
37
37
;f(n)=
3n2-3n+1
3n2-3n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖2為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(n)=
3n2-3n+1
3n2-3n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試12-理科-算法、復(fù)數(shù)、推理與證明 題型:解答題

 蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以表示第幅圖的蜂巢總數(shù).

(1) 試給出的值,并求的表達(dá)式(不要求證明);

(2) 證明:

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案