【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)解;

(3)設(shè),其中.若恒成立,求的取值范圍.

【答案】(1)在上單調(diào)遞減,在區(qū)間上單調(diào)遞增.(2)見解析(3)

【解析】分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;

(2)求出函數(shù)的導(dǎo)函數(shù),根據(jù)函數(shù)的單調(diào)性,得到函數(shù)的零點(diǎn)個(gè)數(shù),求出方程在的解的個(gè)數(shù)即可;

(3)設(shè),根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值, 求出的范圍即可.

詳解:(1)由已知.

所以,在區(qū)間,函數(shù)上單調(diào)遞減,

在區(qū)間,函數(shù)在區(qū)間上單調(diào)遞增.

(2)設(shè).

,由(1)知,函數(shù)在區(qū)間上單調(diào)遞增.

.

所以,在區(qū)間上只有一個(gè)零點(diǎn),方程在區(qū)間上只有一個(gè)解.

(3)設(shè),,定義域?yàn)?/span>,

,

,則,

由(2)知,在區(qū)間上只有一個(gè)零點(diǎn),是增函數(shù),

不妨設(shè)的零點(diǎn)為,則,

所以,在區(qū)間上的情況如下:

-

0

+

所以,函數(shù)的最小值為,

,

,得

所以.

依題意,即,解得,

所以,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=logmm0m≠1),

I)判斷fx)的奇偶性并證明;

II)若m=,判斷fx)在(3,+∞)的單調(diào)性(不用證明);

III)若0m1,是否存在βα>0,使fx)在,β]的值域?yàn)?/span>[logmmβ-1),logmα-1]?若存在,求出此時(shí)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋時(shí)期的著名數(shù)學(xué)家秦九韶在他的著作《數(shù)學(xué)九章》中提出了秦九韶算法來計(jì)算多項(xiàng)式的值,在執(zhí)行如圖算法的程序框圖時(shí),若輸入的n=5,x=2,則輸出V的值為(
A.15
B.31
C.63
D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.

(1)求的通項(xiàng)公式;

(2)求Sn,并判斷Sn+1Sn,Sn+2是否成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個(gè)不同的實(shí)數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個(gè)數(shù)字,這8個(gè)數(shù)字各不相同,且奇數(shù)有3個(gè),偶數(shù)有5個(gè).每張卡片被取出的概率相等.

(Ⅰ)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個(gè)新數(shù),求所得新數(shù)是偶數(shù)的概率;

(Ⅱ)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

105

已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績(jī)與班級(jí)有關(guān)系”?

參考公式:K2

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個(gè)不同的實(shí)數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a﹣bx3)ex ,且函數(shù)f(x)的圖象在點(diǎn)(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當(dāng)x∈(0,1)時(shí),f(x)>2.

查看答案和解析>>

同步練習(xí)冊(cè)答案