1.若焦點(diǎn)在x軸的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0),一條漸近線為y=2x,則a的值為( 。
A.1B.2C.4D.8

分析 根據(jù)雙曲線的方程求得漸近線方程為y=±$\frac{2}{a}$x,即可求出a的值,

解答 解:∵雙曲線的漸近線方程為 y=±$\frac{2}{a}$x,
又已知一條漸近線方程為y=2x,∴$\frac{2}{a}$=2,a=1,
故選:A

點(diǎn)評 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=4x+$\frac{a}{x}$(x>0,a>0)在x=3時(shí)取得最小值,則a=36;f(x)的最小值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某次考試,班主任從全班同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本,他們的數(shù)學(xué)、物理分?jǐn)?shù)對應(yīng)如下表:
學(xué)生編號12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
繪出散點(diǎn)圖如下:

根據(jù)以上信息,判斷下列結(jié)論:
①根據(jù)此散點(diǎn)圖,可以判斷數(shù)學(xué)成績與物理成績具有線性相關(guān)關(guān)系;
②根據(jù)此散點(diǎn)圖,可以判斷數(shù)學(xué)成績與物理成績具有一次函數(shù)關(guān)系;
③甲同學(xué)數(shù)學(xué)考了80分,那么,他的物理成績一定比數(shù)學(xué)只考了60分的乙同學(xué)的物理成績要高.
其中正確的個(gè)數(shù)為( 。
A.0B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位長度,所得圖象的函數(shù)解析式為(  )
A.y=sin(2x+$\frac{π}{3}$)B.y=sin(2x-$\frac{π}{3}$)C.y=sin(2x+$\frac{2π}{3}$)D.y=sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x3-x+3,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為( 。
A.2x-y+1=0B.x-2y+1=0C.2x+y+1=0D.2x-y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=sinx•cosx,x∈R的最小正周期為( 。
A.2B.πC.D.$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為( 。
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)焦點(diǎn),若C上存在點(diǎn)P,使線段PF的中點(diǎn)恰為其虛軸的一個(gè)端點(diǎn),則雙曲線C的漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=a(x2-1)-lnx.
(1)若y=f(x)在x=2處取得極小值,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范圍;
(3)求證:當(dāng)n≥2時(shí),$\frac{1}{ln2}+\frac{1}{ln3}+…+\frac{1}{lnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

同步練習(xí)冊答案