(本小題滿分14分)

   (如圖)設(shè)橢圓中心在坐標(biāo)原點,是它的兩個頂點,直線

       AB相交于點D,與橢圓相交于EF兩點.

   (1)若,求的值;

   (2)求四邊形面積的最大值.

解答:

   (Ⅰ)解:依題設(shè)得橢圓的方程為,

    直線的方程分別為,. 2分

    如圖,設(shè),其中

    且滿足方程,

    故.①

    由,得;

    由上知,得

    所以,

    化簡得,

    解得. 6分

   (Ⅱ)解法一:根據(jù)點到直線的距離公式和①式知,點的距離分別為

   

    . 9分

    又,所以四邊形的面積為

   

   

   

   

    ,

    當(dāng),即當(dāng)時,上式取等號.所以的最大值為.  12分

    解法二:由題設(shè),

    設(shè),,由①得,

    故四邊形的面積為

   

        9分

   

   

   

    ,

    當(dāng)時,上式取等號.所以的最大值為.     12分

解: (Ⅰ)∵為奇函數(shù),∴

                                          ----------------------1分

的最小值為

                                       -----------3分

又直線的斜率為

因此,                                ------------5分

,.                             -------------6分

   (Ⅱ)

  ,列表如下:

極大

極小

   所以函數(shù)的單調(diào)增區(qū)間是.      -----------9分

,,

    ∴上的最大值是,最小值是.········12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案