18.下列推斷中,錯誤的是(  )
A.A∈l,A∈α,B∈α⇒l?α
B.l?α,A∈l⇒A∉α
C.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
D.A,B,C∈α,A,B,C∈β且A,B,C不共線⇒α,β重合

分析 A,一條直線上有兩點在平面內(nèi),則該直線在平面內(nèi);
B,當l?α,A∈l時,可能l∩α=A;
C,兩平面有公共點,則它們有無數(shù)個公共點,在其交線上;
D,根據(jù)不共線的三點確定一個平面可判定,

解答 解:對于A,一條直線上有兩點在平面內(nèi),則該直線在平面內(nèi),故正確;
對于B,當l?α,A∈l時,可能l∩α=A,故錯;
對于C,兩平面有公共點,則它們有無數(shù)個公共點,在其交線上,故正確;
對于D,根據(jù)不共線的三點確定一個平面,故正確
故選:B

點評 本題考查空間中點線面的位置關(guān)系,是一個基礎(chǔ)題,題目考查的知識點比較繁瑣,任意漏掉可能的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知回歸直線方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,假設(shè)學(xué)生在高中時數(shù)學(xué)成績和物理成績是線性相關(guān)的,若5個學(xué)生在高一下學(xué)期某次考試中數(shù)學(xué)成績x(總分150分)和物理成績y(總分100分)如表格所示:
(Ⅰ)求這次高一數(shù)學(xué)成績和物理成績間的線性回歸方程;
(Ⅱ)若小紅這次考試的物理成績是93分,你估計她的數(shù)學(xué)成績是多少分呢?(精確到0.1).
($\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)在定義域(-1,1)上是減函數(shù),且f(a-1)>f(1-3a),則實數(shù)a的取值范圍為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若點(a,9)在函數(shù)y=3x的圖圖象上,則$sin\frac{aπ}{6}-({a+1})tan\frac{aπ}{12}$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.一個幾何體的三視圖如圖所示:求這個幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x∈R,x2-x+1>0,則¬p為( 。
A.?x∉R,x2-x+1>0B.?x0∉R,${x_0}^2-{x_0}+1≤0$
C.?x∈R,x2-x+1≤0D.?x0∈R,${x_0}^2-{x_0}+1≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知“整數(shù)對”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個“整數(shù)對”是(  )
A.(7,5)B.(5,7)C.(2,10)D.(10,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC中,$\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BF}=-\frac{1}{2}\overrightarrow{BC}$,則$\overrightarrow{EF}$=( 。
A.$\frac{3}{2}\overrightarrow{AB}-\frac{7}{6}\overrightarrow{AC}$B.$\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$C.$\frac{3}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$D.$\frac{1}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2sinx-2cosx,$x∈[-\frac{1}{2},1]$,g(x)=e1-2x
(1)求函數(shù)f(x)在x=0處的切線方程;
(2)求證:$x∈[-\frac{1}{2},1]$時,f(x)≥l(x)恒成立;
(3)求證:$x∈[-\frac{1}{2},1]$時,f(x)+g(x)≥0恒成立.

查看答案和解析>>

同步練習(xí)冊答案