10.在等差數(shù)列{an}中,a4=1,a7+a9=16,a12=( 。
A.31B.30C.16D.15

分析 由已知結(jié)合等差數(shù)列的性質(zhì)求得a8,進(jìn)一步由等差數(shù)列的性質(zhì)求得a12

解答 解:在等差數(shù)列{an}中,由a7+a9=16,得2a8=16,
∴a8=8,又a4=1,
∴a12=2a8-a4=16-1=15.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-4,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的解集記為D,有下面四個(gè)命題:
p1:?(x,y)∈D,2x+3y≥-1;   
p2:?(x,y)∈D,2x-5y≥-3;
p3:?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$;      
p4:?(x,y)∈D,x2+y2+2y≤1.
其中的真命題是( 。
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求證:
(1)tanA-$\frac{1}{tanA}$=-$\frac{2}{tan2A}$;
(2)sinθ(1+cos2θ)=sin2θcosθ;
(3)sin2$\frac{α}{4}$=$\frac{1-cos\frac{α}{2}}{2}$;
(4)1+sinα=2cos2($\frac{π}{4}$-$\frac{α}{2}$);
(5)1-sinα=2cos2($\frac{π}{4}$+$\frac{α}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一平面截球O得到半徑為$\sqrt{5}$cm的圓面,球心到這個(gè)平面的距離是2cm,則球的半徑為3cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若$\frac{cos2α}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,則sin(α+$\frac{π}{4}$)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.拋物線y2=2x的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差數(shù)列,且b=3,求ABB1A1面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案