已知二次函數(shù)滿足條件,及.
(1)求的解析式;
(2)求上的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)0≤x≤2,求函數(shù)y=的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般
情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千
米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度
為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:
當(dāng)時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),
單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),其導(dǎo)函數(shù)為,數(shù)列的前項(xiàng)和為點(diǎn)均在函數(shù)的圖像上;.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的通項(xiàng)公式;
(Ⅲ)已知不等式成立,
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知奇函數(shù)f(x)=
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的零點(diǎn);
(2)在坐標(biāo)系中畫出函數(shù)的圖象;
(3)討論方程解的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學(xué)生的興趣激增,中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實(shí)驗(yàn)表明,設(shè)提出和講述概念的時間為(單位:分),學(xué)生的接受能力為值越大,表示接受能力越強(qiáng)),
  
(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大小;
(3)若一個數(shù)學(xué)難題,需要56的接受能力以及12分鐘時間,老師能否及時在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是.
(1)求的解析式;
(2)設(shè)函數(shù)上的最小值為,求的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案