12.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,則$\frac{y-2}{x-4}$的最大值為$\frac{6}{7}$.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用斜率的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
$\frac{y-2}{x-4}$的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(4,2)的斜率,
由圖象知AD的斜率最大,
由$\left\{\begin{array}{l}{x+3=0}\\{x-y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-3}\\{y=-4}\end{array}\right.$,即A(-3,-4),
此時(shí)AD的斜率k=$\frac{y-2}{x-4}$=$\frac{-4-2}{-3-4}$=$\frac{6}{7}$,
故答案為:$\frac{6}{7}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義結(jié)合直線的斜率公式是解決問(wèn)題的關(guān)鍵,利用數(shù)形結(jié)合是解決問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.△ABC是球的一個(gè)截面的內(nèi)接三角形,其中AB=18,BC=24、AC=30,球心到這個(gè)截面的距離為球半徑的一半,則球的半徑等于( 。
A.10B.$10\sqrt{3}$C.15D.$15\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知a>0且a≠1,函數(shù)f(x)=4+loga(x+4)的圖象恒過(guò)定點(diǎn)P,若角α的終邊經(jīng)過(guò)點(diǎn)P,則cosα的值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某投資公司準(zhǔn)備在2016年年底將1000萬(wàn)元投資到某“低碳”項(xiàng)目上,據(jù)市場(chǎng)調(diào)研,該項(xiàng)目的年投資回報(bào)率為20%.該投資公司計(jì)劃長(zhǎng)期投資(每一年的利潤(rùn)和本金繼續(xù)用作投資),若市場(chǎng)預(yù)期不變,大約在2020年的年底總資產(chǎn)(利潤(rùn)+本金)可以翻一番.(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在平面四邊形ABCD中,$\overrightarrow{BA}•\overrightarrow{BC}=32$.
(1)若$\overrightarrow{BA}$與$\overrightarrow{BC}$的夾角為30°,求△ABC的面積S△ABC;
(2)若$|{\overrightarrow{AC}}|=4,O$為AC的中點(diǎn),G為△ABC的重心(三條中線的交點(diǎn)),且$\overrightarrow{OG}$與$\overrightarrow{OD}$互為相反向量,求$\overrightarrow{AD}•\overrightarrow{CD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.
求證:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩個(gè)焦點(diǎn),PQ是經(jīng)過(guò)F1且垂直于x軸的雙曲線的弦,若∠PF2Q=90°,則雙曲線的離心率為( 。
A.2B.$2\sqrt{2}$C.$\sqrt{2}-1$D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在平行四邊形ABCD中,$∠BAD=\frac{π}{3}$,AB=2,AD=1,若M、N分別是邊BC、CD上的點(diǎn),且滿足$\frac{BM}{BC}=\frac{NC}{DC}=λ$,其中λ∈[0,1],則$\overrightarrow{AM}•\overrightarrow{AN}$的取值范圍是( 。
A.[0,3]B.[1,4]C.[2,5]D.[1,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.方程xy2+x2y=1所表示的曲線(  )
A.關(guān)于x軸對(duì)稱(chēng)B.關(guān)于y軸對(duì)稱(chēng)C.關(guān)于原點(diǎn)對(duì)稱(chēng)D.關(guān)于直線y=x對(duì)稱(chēng)

查看答案和解析>>

同步練習(xí)冊(cè)答案