已知曲線Cn:x2-2nx+y2=0(n=1,2,…)。從點(diǎn)P(-1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn),
(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;
(2)證明:。
(1)解:設(shè)直線ln
聯(lián)立,


,
;
(2)證明:∵
,

由于,
可令函數(shù)
,
給定區(qū)間,則有f′(x)<0,
則函數(shù)f(x)在上單調(diào)遞減,
∴f(x)<f(0)=0,
恒成立,
,
則有。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線Cn:x2-2nx+y2=0(n=1,2,…).從點(diǎn)P(-1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn).
(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;
(2)證明:x1x3x5•…•x2n-1
1-xn
1+xn
2
sin
xn
yn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》2010年單元測試卷(解析版) 題型:解答題

已知曲線Cn:x2-2nx+y2=0(n=1,2,…).從點(diǎn)P(-1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn).
(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線Cn:x2-2nx+y2=0(n=1,2,…).從點(diǎn)P(-1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn).
(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)精練:數(shù)列(解析版) 題型:解答題

已知曲線Cn:x2-2nx+y2=0(n=1,2,…).從點(diǎn)P(-1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點(diǎn)為Pn(xn,yn).
(1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;
(2)證明:

查看答案和解析>>

同步練習(xí)冊答案