(2012•惠州模擬)(坐標系與參數(shù)方程選做題)已知圓C的極坐標方程ρ=2cosθ,則圓C上點到直線l:ρcosθ-2ρsinθ+7=0的最短距離為
8
5
5
-1
8
5
5
-1
分析:先利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得圓和直線的直角坐標方程,再在直角坐標系中算出圓心到直線距離,最后所求的最短距離就是圓心到直線的距離減去半徑即可.
解答:解:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,
ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,
∴圓心到直線距離為:
d=
|1-2×0+7|
12+22
=
8
5
5

則圓C上點到直線l:ρcosθ-2ρsinθ+7=0的最短距離為
8
5
5
-1

故答案為:
8
5
5
-1.
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)已知實數(shù)4,m,9構成一個等比數(shù)列,則圓錐曲線
x2
m
+y2=1
的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)已知橢圓C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的離心率為
6
3
,且經(jīng)過點(
3
2
1
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)的直線交橢圓C于A,B兩點,求△AOB(O為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點.
(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)計算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步練習冊答案