若關(guān)于x的方程sin x+2|sin x|=k在x∈[0,2π]內(nèi)有且僅有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:可化為函數(shù)y=sin x+2|sin x|與函數(shù)y=k有且僅有兩個(gè)不同的交點(diǎn),作圖分析即可.
解答: 解:關(guān)于x的方程sin x+2|sin x|=k在x∈[0,2π]內(nèi)有且僅有兩個(gè)不同的實(shí)數(shù)解可化為
函數(shù)y=sin x+2|sin x|與函數(shù)y=k有且僅有兩個(gè)不同的交點(diǎn),
如下圖:

則實(shí)數(shù)k的取值范圍是(1,3).
故答案為:(1,3).
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)的轉(zhuǎn)化及學(xué)生的作圖能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4-m2+4m-4
+
3m2+3m-2
-
m3+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3
)-
3
cos(2x+
π
3
)+4sin2x,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-
π
4
π
4
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,若20a
BC
+15b
CA
+12c
AB
=
0
,則△ABC最小角的正弦值為(  )
A、
4
5
B、
3
4
C、
3
5
D、
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Atan(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的部分圖象如圖,則f(
24
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x
,x≥2
(x-1)3,x<2
若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
(1+x)+log 
1
2
(3-x).
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求函數(shù)f(x)的值域;
(Ⅲ)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α與β的終邊垂直,則α與β的關(guān)系是( 。
A、β=α+90°
B、β=α±90°
C、β=k•360°+α+90°,k∈ZD
D、β=k•360°+α±90°,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期為π,且當(dāng)x∈[-
π
2
,0)
時(shí),f(x)=sin x,則f(-
3
)
的值為(  )
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案