如果關(guān)于實(shí)數(shù)x的方程數(shù)學(xué)公式的所有解中,僅有一個(gè)正數(shù)解,那么實(shí)數(shù)a的取值范圍為


  1. A.
    {a|-2≤a≤2}
  2. B.
    {a|a≤0或a=2}
  3. C.
    {a|a≥2或a<-2}
  4. D.
    {a|a≥0或a=-2}
B
分析:原條件有且僅有一個(gè)正實(shí)數(shù)解,令,t的符號(hào)與x的符號(hào)一致,則a=-t3+3t有且僅有一個(gè)正實(shí)數(shù)解,然后通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,畫出函數(shù)圖象,結(jié)合圖象可求出a的取值范圍.
解答:關(guān)于實(shí)數(shù)x的方程的所有解中,僅有一個(gè)正數(shù)解有且僅有一個(gè)正實(shí)數(shù)解.
,t的符號(hào)與x的符號(hào)一致,則a=-t3+3t有且僅有一個(gè)正實(shí)數(shù)解,
令f(t)=-t3+3t(t≠0),
f′(t)=-3t2+3,由f′(t)=0得t=1或t=-1.
又t∈(-1,1)時(shí),f′(t)>0;t∈(-∞,-1),(1,+∞)時(shí),
f′(t)<0.所以[f(t)]極大值=f(1)=2.
又t→-∞,f(t)→+∞;t→+∞,f(t)→-∞.
結(jié)合三次函數(shù)圖象即可.
綜上所述,實(shí)數(shù)a的取值范圍為(-∞,0]∪{2}.
故選B.
點(diǎn)評(píng):本題主要考查了根的存在性及根的個(gè)數(shù)判斷,以及三次函數(shù)的性質(zhì),同時(shí)考查了數(shù)形結(jié)合與函數(shù)方程的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于實(shí)數(shù)x的方程ax2+
1x
=3x
的所有解中,僅有一個(gè)正數(shù)解,那么實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于實(shí)數(shù)x的方程ax2+
1
x
=3x
的所有解中,僅有一個(gè)正數(shù)解,那么實(shí)數(shù)a的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:①若區(qū)間D內(nèi)任意實(shí)數(shù)x都有f(x+1)>f(x),則y=f(x)在D上是增函數(shù);②y=-
1
x
在定義域內(nèi)是增函數(shù);③函數(shù)f(x)=
1-x2
|x+1|-1
圖象關(guān)于原點(diǎn)對(duì)稱;④如果關(guān)于實(shí)數(shù)x的方程ax2+
1
x
=3x
的所有解中,正數(shù)解僅有一個(gè),那么實(shí)數(shù)a的取值范圍是a≤0;  其中正確的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:①若區(qū)間D內(nèi)任意實(shí)數(shù)x都有f(x+1)>f(x),則y=f(x)在D上是增函數(shù);②y=-
1
x
在定義域內(nèi)是增函數(shù);③函數(shù)f(x)=
1-x2
|x+1|-1
圖象關(guān)于原點(diǎn)對(duì)稱;④如果關(guān)于實(shí)數(shù)x的方程ax2+
1
x
=3x
的所有解中,正數(shù)解僅有一個(gè),那么實(shí)數(shù)a的取值范圍是a≤0;  其中正確的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果關(guān)于實(shí)數(shù)x的方程ax2+
1
x
=3x
的所有解中,僅有一個(gè)正數(shù)解,那么實(shí)數(shù)a的取值范圍為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案