m |
3 |
n |
B |
2 |
m |
n |
BA |
AC |
AB |
n |
m |
n |
BA |
AC |
AB |
m |
3 |
n |
B |
2 |
m |
n |
m |
n |
3 |
3 |
π |
3 |
π |
2 |
π |
3 |
π |
3 |
BA |
AC |
AB |
BA |
BC |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2ac |
a2+c2-b2 |
A+C |
2 |
π |
2 |
3π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
b |
a |
b |
a |
b |
a |
a |
b |
a |
b |
a |
b |
a |
b |
OP |
OA |
OB |
OC |
AB |
AC |
AB |
AC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
3 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省金華一中2011-2012學(xué)年高一下學(xué)期期中考試數(shù)學(xué)試卷 題型:013
給出下列命題:
(1)α、β是銳角△ABC的兩個內(nèi)角,則sinα<sinβ;
(2)在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為();
(3)已知與為互相垂直的單位向量,=-2,=+λ且與的夾角為銳角,則實(shí)數(shù)λ的取值范圍是;
(4)已知O是△ABC所在平面內(nèi)定點(diǎn),若P是△ABC的內(nèi)心,則有=+λ(),λ∈R;
(5)直線x=-是函數(shù)y=sin(2x-)圖象的一條對稱軸.
其中正確命題是
A.(1)(3)(5)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
己知在銳角ΔABC中,角所對的邊分別為,且
(I )求角大;
(II)當(dāng)時(shí),求的取值范圍.
20.如圖1,在平面內(nèi),是的矩形,是正三角形,將沿折起,使如圖2,為的中點(diǎn),設(shè)直線過點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個動點(diǎn),且與點(diǎn)位于平面的同側(cè)。
(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。
21.已知A,B是橢圓的左,右頂點(diǎn),,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù) ,
(Ⅰ)若在上存在最大值與最小值,且其最大值與最小值的和為,試求和的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實(shí)數(shù),使得在為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;
(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com