設(shè)點(diǎn)P(x,y),則“x=2且y=-1”是“點(diǎn)P在直線l:x+y-1=0上”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
【答案】分析:當(dāng)x=2且y=-1”可以得到“點(diǎn)P在直線l:x+y-1=0上”,當(dāng)點(diǎn)P在直線l:x+y-1=0上時(shí),不一定得到x=2且y=-1,得到x=2且y=-1”是“點(diǎn)P在直線l:x+y-1=0上”的充分不必要條件.
解答:解:∵x=2且y=-1”可以得到“點(diǎn)P在直線l:x+y-1=0上”,
當(dāng)“點(diǎn)P在直線l:x+y-1=0上”時(shí),不一定得到x=2且y=-1,
∴“x=2且y=-1”是“點(diǎn)P在直線l:x+y-1=0上”的充分不必要條件,
故選A.
點(diǎn)評(píng):本題考查條件問題,本題解題的關(guān)鍵是看出點(diǎn)P在直線l:x+y-1=0上時(shí),不能確定這個(gè)點(diǎn)的坐標(biāo)的大小,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•福建)設(shè)點(diǎn)P(x,y),則“x=2且y=-1”是“點(diǎn)P在直線l:x+y-1=0上”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,設(shè)P為兩動(dòng)圓(x+2)2+y2=(r+2)2,(x-2)2+y2=r2(r>1)的一個(gè)交點(diǎn),記動(dòng)點(diǎn)P的軌跡為C.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于x軸對(duì)稱;
③設(shè)點(diǎn)P(x,y),則有|y|<|2x|.
其中,所有正確的結(jié)論序號(hào)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P(x,y),則“x=2且y=-1”是“點(diǎn)P在直線l:x+y+1=0上”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系xOy中,設(shè)P為兩動(dòng)圓(x+2)2+y2=(r+2)2,(x-2)2+y2=r2(r>1)的一個(gè)交點(diǎn),記動(dòng)點(diǎn)P的軌跡為C.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于x軸對(duì)稱;
③設(shè)點(diǎn)P(x,y),則有|y|<|2x|.
其中,所有正確的結(jié)論序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市西城區(qū)(北區(qū))高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

在直角坐標(biāo)系xOy中,設(shè)P為兩動(dòng)圓(x+2)2+y2=(r+2)2,(x-2)2+y2=r2(r>1)的一個(gè)交點(diǎn),記動(dòng)點(diǎn)P的軌跡為C.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于x軸對(duì)稱;
③設(shè)點(diǎn)P(x,y),則有|y|<|2x|.
其中,所有正確的結(jié)論序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案