5.知函數(shù)f(x)=$\left\{\begin{array}{l}{2-x,x>0}\\{x+2,x<0}\end{array}\right.$,F(xiàn)(x)=xf(x)
(1)若F(a)=3,求a的值;
(2)若F(x)<0,求出x的取值集.

分析 (1)根據(jù)分段函數(shù)的解析式即可求出a的值,
(2)根據(jù)分段函數(shù)的解析式得到關(guān)于x的不等式組,解得即可.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{2-x,x>0}\\{x+2,x<0}\end{array}\right.$,F(xiàn)(x)=xf(x)=$\left\{\begin{array}{l}{x(2-x),x>0}\\{x(2+x),x<0}\end{array}\right.$
由F(a)=3得$\left\{\begin{array}{l}{a>0}\\{a(2-a)=3}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{a(2+a)=3}\end{array}\right.$ 
所以a=-3
(2)由F(x)<0,
則$\left\{\begin{array}{l}{x>0}\\{x(2-x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{x(x+2)<0}\end{array}\right.$,
∴x>2或-2<x<0,
∴x∈(-2,0)∪(2,+∞).

點(diǎn)評 本題考查了分段函數(shù)的解析式和不等式的解集問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)={a^{3{x^2}-3}}$,$g(x)={({\frac{1}{a}})^{5x+5}}$,其中a>0,且a≠1.
(1)若0<a<1,求滿足不等式f(x)<1的x的取值的集合;
(2)求關(guān)于x的不等式f(x)≥g(x)的解的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.為了研究某種細(xì)菌在特定環(huán)境下隨時間變化的繁殖情況,得到如下實(shí)驗(yàn)數(shù)據(jù):
天數(shù)t(天)34567
繁殖個數(shù)y(千個)2.5m44.56
及y關(guān)于t的線性回歸方程$\hat y=0.85t-0.25$,則實(shí)驗(yàn)數(shù)據(jù)中m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法正確的是(  )
A.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件
B.“p∨q為真命題”的必要不充分條件是“p∧q為真命題”
C.命題“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.二次函數(shù)y=ax2+bx和反比例函數(shù)$y=\frac{x}$在同一坐標(biāo)系中的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn).
(1)若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,求直線AB的斜率;
(2)設(shè)點(diǎn)M在線段AB上運(yùn)動,原點(diǎn)O關(guān)于點(diǎn)M的對稱點(diǎn)為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.方程x2-5x+1=0的兩根是兩圓錐曲線的離心率,它們是(  )
A.橢圓、雙曲線B.橢圓、拋物線C.雙曲線、拋物線D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A,B滿足,集合A={x|x+y2=1,y∈R},B={y|y=x2-1,x∈R},則A∩B=[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等差數(shù)列{an}中,a5=15,則a3+a4+a7+a6的值為( 。
A.30B.45C.60D.120

查看答案和解析>>

同步練習(xí)冊答案