4.已知曲線C的極坐標(biāo)方程為ρsin(θ+$\frac{π}{3}$)=3,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程.

分析 由$ρsin(θ+\frac{π}{3})=3$展開(kāi)得$\frac{1}{2}ρsinθ+\frac{{\sqrt{3}}}{2}ρcosθ=3$,再利用互化公式即可得出.

解答 解:由$ρsin(θ+\frac{π}{3})=3$展開(kāi)得$\frac{1}{2}ρsinθ+\frac{{\sqrt{3}}}{2}ρcosθ=3$,
又ρcosθ=x,ρsinθ=y,
∴曲線C的直角坐標(biāo)方程為$\sqrt{3}x+y-6=0$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知直線l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立直角坐標(biāo)系,圓C1:ρ2-2$\sqrt{3}$ρcosθ-4ρsinθ+6=0.
(1)求圓C1的直角坐標(biāo)方程,直線l1的極坐標(biāo)方程;
(2)設(shè)l1與C1的交點(diǎn)為M,N,求△C1MN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)a∈R,若復(fù)數(shù)(1+i)(a+i)的虛部為零,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某校有足球、籃球、排球三個(gè)興趣小組,共有成員120人,其中足球、籃球、排球的成員分別有40人、60人、20人.現(xiàn)用分層抽樣的方法從這三個(gè)興趣小組中抽取24人來(lái)調(diào)查活動(dòng)開(kāi)展情況,則在足球興趣小組中應(yīng)抽取8人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正數(shù)a,b滿足$\frac{1}{a}$+$\frac{9}$=$\sqrt{ab}$-5,則ab的最小值為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知奇函數(shù)f(x)是定義在(-1,1)上的減函數(shù),且f(1-t)+f(1-t2)<0,則 t的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$.
(1)證明函數(shù)f(x)在(-1,+∞)上為單調(diào)遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$\frac{1}{a}$<$\frac{1}$<0,給出下列四個(gè)結(jié)論:其中正確結(jié)論的序號(hào)是( 。
①a<b②a+b<ab③|a|>|b|④ab<b2
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=$\frac{{{2^x}+1}}{{{2^x}-1}}$的圖象一定(  )
A.關(guān)于y軸對(duì)稱B.關(guān)于原點(diǎn)對(duì)稱C.關(guān)于x軸對(duì)稱D.關(guān)于y=x軸對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案