13.已知某幾何體的正視圖、側(cè)視圖都是直角三角形,俯視圖是矩形(尺寸如圖所示).
(1)作出該幾何體的直觀圖;
(2)求該幾何體的體積V.

分析 (1)由已知中的三視圖,可得該幾何體的直觀圖;
(2)該幾何體是四棱錐,求出底面面積和高,代入體積公式,可得答案.

解答 解:(1)該幾何體的直觀圖如圖:

┅┅┅┅┅┅┅┅┅(5分)
(Ⅱ)該幾何體是四棱錐,
其底面的面積:S=6×8=48┅┅┅┅┅┅┅┅┅(7分)
高h(yuǎn)=6┅┅┅┅┅┅┅(8分)
則體積V=$\frac{1}{3}Sh$=$\frac{1}{3}×48×6$=96┅┅┅┅┅┅┅┅┅┅(10分)

點(diǎn)評 本題考查的知識點(diǎn)是棱錐的體積和表面積,簡單幾何體的三視圖和直觀圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若線性回歸方程為y=2-3.5x,則變量x增加一個(gè)單位,變量y平均( 。
A.減少3.5個(gè)單位B.增加2個(gè)單位C.增加3.5個(gè)單位D.減少2個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知角α的終邊上有一點(diǎn)P(1,3),則$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值為-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=|ln(x-1)|,若f(a)=f(b),則a+2b的取值范圍為( 。
A.(4,+∞)B.$[3+2\sqrt{2}\;\;,\;\;+∞)$C.[6,+∞)D.$(4\;\;,\;\;3+2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,則函數(shù)g(x)=f(x)-x-3的零點(diǎn)有2 個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=x(1+x3)-1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某制造商為運(yùn)動(dòng)會生產(chǎn)一批直徑為40mm的乒乓球,現(xiàn)隨機(jī)抽樣檢查20只,測得每只球的直徑(單位:mm,保留兩位小數(shù))如下:
40.0240.0039.9840.0039.99
40.0039.9840.0139.9839.99
40.0039.9939.9540.0140.02
39.9840.0039.9940.0039.96
(Ⅰ)完成下面的頻率分布表,并畫出頻率分布直方圖;
分組頻數(shù)頻率$\frac{頻率}{組距}$
[39.95,39.97)2
[39.97,39.99)4
[39.99,40.01)10
[40.01,40.03]4
合計(jì)
(Ⅱ)假定乒乓球的直徑誤差不超過0.02mm為合格品,若這批乒乓球的總數(shù)為10 000只,試根據(jù)抽樣檢查結(jié)果估計(jì)這批產(chǎn)品的合格只數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線x+a2y+6=0與直線(a-2)x+3ay+2a=0平行,則a的值為0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.“a=1”是“a2=1”成立的充分不必要條件.(在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中選一個(gè)合適的填空)充分不必要.

查看答案和解析>>

同步練習(xí)冊答案