【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)區(qū)間.

(2)設(shè),討論函數(shù)的零點個數(shù).

【答案】(1)見解析;(2)見解析.

【解析】

(1)本題可以先對函數(shù)進行求導(dǎo)并進行化簡,然后對導(dǎo)數(shù)進行分類討論,即可得出結(jié)果;

(2)可以先通過函數(shù)的解析式求出函數(shù)的解析式,再通過求導(dǎo)求出函數(shù)的最大值,最后通過判斷最大值的大小來判斷零點的個數(shù)。

(1)因為

所以

①當時,恒大于恒大于,故恒為增函數(shù);

②當時,為增函數(shù);為減函數(shù)

綜上所述,當時,恒為增函數(shù);當時,為增函數(shù),為減函數(shù)。

(2)

①當時,恒小于,故沒有零點;

②當時,,為增函數(shù);

為減函數(shù),

故當時,取最大值,

故當,無零點;

時,,有一個零點;

時,,有兩個零點。

綜上所述,當,沒有零點;當時,有一個零點;當時,有兩個零點。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,六芒星是由兩個全等正三角形組成,中心重合于點且三組對邊分別平行,點六芒星(如圖)的兩個頂點,動點六芒星上(內(nèi)部以及邊界),若,則的取值可能是(

A.B.1C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)

(Ⅰ)若是函數(shù)的一個極值點,求此時函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意的,,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),且的解集為;數(shù)列的前項和為,對任意,滿足.

1)求的值及數(shù)列的通項公式;

2)已知數(shù)列的前項和為,滿足,,求數(shù)列的前項和

3)已知數(shù)列滿足,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有12支球隊進行足球比賽,每兩隊都賽一場,勝者得3分,負者得0分,平局各得1分那么,有1支球隊最少要得多少分才能保證最多有6支球隊的得分不少于該隊的得分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是一個長方體從點到直線、的垂線分別交直線、于點、,垂足分別為、.求證:

(1)、三點共線;

(2)、、三條直線交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,,,

(1)求的長;

(2)若,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).

x(萬元)

3

5

7

9

11

y(萬元)

8

10

13

17

22

1)求y關(guān)于x的線性回歸方程;

2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?

相關(guān)公式:,.

查看答案和解析>>

同步練習(xí)冊答案