分析 (Ⅰ)由F1(-1,0),F(xiàn)2(1,0),則|F1F2|=2,則|PF1|+|PF2|=4>|F1F2|=2,點(diǎn)P軌跡為以F1,F(xiàn)2為焦點(diǎn)的橢圓(不包括左右頂點(diǎn)),設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(y≠0)$,由a=2,c=1,b2=a2-c2=4-1=3,即可求得動(dòng)點(diǎn)P軌跡C的方程;
(Ⅱ)當(dāng)k=0顯然不符合題意,當(dāng)k≠0時(shí),設(shè)直線l:y=kx+m,代入橢圓方程,△>0,整理得4k2-m2+3>0,由韋達(dá)定理可知${x_1}+{x_2}=-\frac{8km}{{4{k^2}+3}}=2{x_0}$,即可求得y0=$\frac{3m}{4{k}^{2}+3}$,由M(x0,y0)在拋物線E:y2=4x上,由$m≠0∴m=-\frac{16}{9}{k^2}(4{k^2}+3)$,代入可知256k2(4k2+3)<81,即可求得k的取值范圍.
解答 解:(Ⅰ)由F1(-1,0),F(xiàn)2(1,0),則|F1F2|=2,
△PF1F2的周長(zhǎng)為6,則|PF1|+|PF2|=4>|F1F2|=2,
∴點(diǎn)P軌跡為以F1,F(xiàn)2為焦點(diǎn)的橢圓(不包括左右頂點(diǎn)),
設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(y≠0)$,
∵2a=4,2c=2,即a=2,c=1,
由b2=a2-c2=4-1=3,
∴軌跡C的方程為:$\frac{x^2}{4}+\frac{y^2}{3}=1(y≠0)$;…(6分)
(Ⅱ)當(dāng)k=0顯然不符合題意 …(7分)
當(dāng)k≠0時(shí),設(shè)A(x1,y1),B(x2,y2),AB中點(diǎn)為M(x0,y0),設(shè)直線l:y=kx+m,
∴$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1(y≠0)}\end{array}\right.$,整理得:(4k2+3)x2+8kmx+4m2-12=0,
由△>0,整理得4k2-m2+3>0…(1)式 …(10分)
由韋達(dá)定理得:${x_1}+{x_2}=-\frac{8km}{{4{k^2}+3}}=2{x_0}$,
∴${x_0}=-\frac{4km}{{4{k^2}+3}}$,代入y=kx+m,則y0=$\frac{3m}{4{k}^{2}+3}$,
由條件可知M(x0,y0)在拋物線E:y2=4x上,
代入M點(diǎn)坐標(biāo)
∵$m≠0∴m=-\frac{16}{9}{k^2}(4{k^2}+3)$…(2)式…(12分)
將(2)式代入(1)式得:256k2(4k2+3)<81,解得k2<$\frac{3}{32}$,
即-$\frac{\sqrt{6}}{8}$<k<$\frac{\sqrt{6}}{8}$,…(14分)
綜上所述,k的取值范圍為(-$\frac{\sqrt{6}}{8}$,0)∪(0,$\frac{\sqrt{6}}{8}$).…(15分)
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查點(diǎn)的軌跡方程的求法,考查直線與橢圓的位置關(guān)系,韋達(dá)定理,中點(diǎn)坐標(biāo)公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p(n)對(duì)所有正整數(shù)n都成立 | B. | p(n)對(duì)所有正偶數(shù)n都成立 | ||
C. | p(n)對(duì)大于或等于2的正整數(shù)n都成立 | D. | p(n)對(duì)所有自然數(shù)都成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知函數(shù)(其中),.
(1)若命題“”是真命題,求的取值范圍;
(2)設(shè)命題或;命題,若是真命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知點(diǎn),圓:,過(guò)點(diǎn)的動(dòng)直線與圓相交于、兩點(diǎn),線段的中點(diǎn)為,且在圓上.
(1)若直線()經(jīng)過(guò)點(diǎn),求的最大值;
(2)求圓的方程;
(3)若過(guò)點(diǎn)的直線與圓相交于,兩點(diǎn),線段的中點(diǎn)為.與:的交點(diǎn)為,求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com