數(shù)列滿足,),是常數(shù).

(Ⅰ)當(dāng)時(shí),求的值;

(Ⅱ)數(shù)列是否可能為等差數(shù)列?若可能,求出它的通項(xiàng)公式;若不可能,說明理由.

 

【答案】

(Ⅰ)

(Ⅱ)對(duì)任意,數(shù)列都不可能是等差數(shù)列.

【解析】

試題分析:(Ⅰ)由于,且

所以當(dāng)時(shí),得,故

從而.          6分

(Ⅱ)數(shù)列不可能為等差數(shù)列,證明如下:

,

,

若存在,使為等差數(shù)列,則

,解得

于是

這與為等差數(shù)列矛盾.所以,對(duì)任意,數(shù)列都不可能是等差數(shù)列.       12分

考點(diǎn):本題主要考查數(shù)列的遞推公式,等差數(shù)列的定義,反證法。

點(diǎn)評(píng):中檔題,本題綜合性較強(qiáng),特別是(2)探究數(shù)列的特征,利用反證法證明數(shù)列不可能是等差數(shù)列。注意,首先假設(shè)某命題不成立(即在原命題的條件下,結(jié)論不成立),然后推理出明顯矛盾的結(jié)果,從而下結(jié)論說原假設(shè)不成立,原命題得證。一定要用到“反設(shè)”,法則表示反證法。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=2an-1-2n+5(n∈N+且n≥2),a1=1.
(1)若bn=an-2n+1,求證:數(shù)列{bn}(n∈N+)是常數(shù)列,并求{an}的通項(xiàng);
(2)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{cn}的前n項(xiàng)和Tn>tn2在n∈N+時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省武漢市高三四月調(diào)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知數(shù)列{an}滿足an=2an-1-2n+5(n∈N+且n≥2),a1=1.
(1)若bn=an-2n+1,求證:數(shù)列{bn}(n∈N+)是常數(shù)列,并求{an}的通項(xiàng);
(2)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{cn}的前n項(xiàng)和Tn>tn2在n∈N+時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省宜春市上高二中、新余市鋼鐵中學(xué)高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知數(shù)列{an}滿足an=2an-1-2n+5(n∈N+且n≥2),a1=1.
(1)若bn=an-2n+1,求證:數(shù)列{bn}(n∈N+)是常數(shù)列,并求{an}的通項(xiàng);
(2)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{cn}的前n項(xiàng)和Tn>tn2在n∈N+時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省黃岡市羅田一中二輪復(fù)習(xí)備考數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列{an}滿足an=2an-1-2n+5(n∈N+且n≥2),a1=1.
(1)若bn=an-2n+1,求證:數(shù)列{bn}(n∈N+)是常數(shù)列,并求{an}的通項(xiàng);
(2)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{cn}的前n項(xiàng)和Tn>tn2在n∈N+時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷2(文科)(解析版) 題型:解答題

已知數(shù)列{an}滿足an=2an-1-2n+5(n∈N+且n≥2),a1=1.
(1)若bn=an-2n+1,求證:數(shù)列{bn}(n∈N+)是常數(shù)列,并求{an}的通項(xiàng);
(2)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{cn}的前n項(xiàng)和Tn>tn2在n∈N+時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案