已知函數(shù).
(1) 試判斷函數(shù)在上單調(diào)性并證明你的結(jié)論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.
(1)上是減函數(shù)
(2)正整數(shù)k的最大值是3
(3)由(Ⅱ)知∴利用放縮法得到。
解析試題分析:解:(1)
上是減函數(shù) 4分
(2)即h(x)的最小值大于k.
則上單調(diào)遞增,
又 存在唯一實(shí)根a, 且滿足
當(dāng)
∴ 故正整數(shù)k的最大值是3 ----9分
(3)由(Ⅱ)知∴
令, 則
∴l(xiāng)n(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]
∴(1+1×2)(1+2×3)…[1+n(n+1)]>e2n-3 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是同時(shí)符合以下性質(zhì)的函數(shù)組成的集合:
①,都有;②在上是減函數(shù).
(1)判斷函數(shù)和()是否屬于集合,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合中的一個(gè)函數(shù)記為,若不等式對任意的總成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),函數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)正實(shí)數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/e/13xpu3.png" style="vertical-align:middle;" />的奇函數(shù),且當(dāng)時(shí),
,(。
(1)求實(shí)數(shù)的值;并求函數(shù)在定義域上的解析式;
(2)求證:函數(shù)上是增函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)若a=0時(shí),求函數(shù)在點(diǎn)(1,)處的切線方程;
(2)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令是否存在實(shí)數(shù)a,當(dāng)是自然對數(shù)的底)時(shí),函數(shù) 的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(1)若,求的單調(diào)區(qū)間及的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項(xiàng)為2,公差為2的等差數(shù)列.
(1)=f(),當(dāng)m=時(shí),求數(shù)列{}的前n項(xiàng)和;
(2)設(shè)=·,如果{}中的每一項(xiàng)恒小于它后面的項(xiàng),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù).
(1)若函數(shù)在區(qū)間內(nèi)是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com