若函數(shù)y=|-x2+4x-3|的圖象C與直線y=kx相交于點(diǎn)M(2,1),那么曲線C與該直線的交點(diǎn)的個(gè)數(shù)為(  )
A、1B、2C、3D、4
考點(diǎn):二次函數(shù)的性質(zhì),函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直線y=kx過(guò)點(diǎn)M(2,1),求出y=
1
2
x
,畫(huà)出圖象y=
1
2
x
,函數(shù)y=|-x2+4x-3|,即可得出交點(diǎn)個(gè)數(shù).
解答: 解:∵直線y=kx過(guò)點(diǎn)M(2,1),
∴1=2k,
k=
1
2

∴y=
1
2
x
,
∵函數(shù)y=|-x2+4x-3|
∴作圖如下:

曲線C與該直線的交點(diǎn)的個(gè)數(shù)為4
故選:D
點(diǎn)評(píng):本題考查了函數(shù)的圖象解決問(wèn)題,畫(huà)出圖象,即可判斷交點(diǎn),難度不大,屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+m,x∈R.
(Ⅰ)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[-
π
6
,
π
3
]時(shí),f(x)min=2,求函數(shù)f(x)的最大值,并指出x取何值時(shí),函數(shù)f(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={(x,y)|y=x}與集合B={(x,y)|x=a+
1-y2
,a∈R},若A∩B的元素只有一個(gè),則實(shí)數(shù)a的取值范圍是( 。
A、a=±
2
B、-1<a<1或a=±
2
C、a=
2
或-1≤a<1
D、-1<a≤1或a=-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,直線l:x-my-1=0(m∈R)過(guò)橢圓C的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)D(
5
2
,0),連結(jié)BD,過(guò)點(diǎn)A作垂直于y軸的直線l1,設(shè)直線l1與直線BD交于點(diǎn)P,試探索當(dāng)m變化時(shí),是否存在一條定直線l2,使得點(diǎn)P恒在直線l2上?若存在,請(qǐng)求出直線l2的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4sinxcos(x+
π
3
)+
3

(1)f(x)在區(qū)間[-
π
4
π
6
]上的最大值和最小值及取得最值時(shí)x的值.
(2)若方程f(x)-t=0在x∈[-
π
4
,
π
2
]上有唯一解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-3sin2x-cos2x+2.
(1)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足
b
a
=
3
,
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
sin2x•sinφ+cos2x•cosφ+
1
2
sin(
3
2
π-φ)(0<φ<π),其圖象過(guò)點(diǎn)(
π
6
1
2
.)
(Ⅰ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(Ⅱ)若x0∈(
π
2
,π),sinx0=
3
5
,求f(x0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)空間任意一點(diǎn)O和不共線三點(diǎn)A、B、C,若點(diǎn)P滿足向量關(guān)系
OP
=x
OA
-
OB
+3
OC
,且P、A、B、C四點(diǎn)共面,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)互不相等的平面向量組
ai
(i=1,2,3,…),滿足:①|(zhì)
ai
|=2;②
ai
ai+1
=0,若
Tm
=
a1
+
a2
+…+
am
(m≥2),則|
Tm
|的取值集合為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案